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ABSTRACT 

A brief review of the salient features of the theoretical investigation 

of the c.w. bistatic inverse scattering problem is presented.   The effect of changing 

the origin of the coordinate system upon the convergent properties etc., of the 

spherical vector wave function representation of the near scattered field and the 

surface loci  IS x E_* = 0 ,   is discussed.   It is pointed out that a  great deal 

of analysis  remains  to  be done  in this  area.    The determination of the surface 

of the scattering body from knowledge of the local total electric field is given. 

Emphasis is placed upon the generalization of the condition  ExE*-0  as applied 

to perfectly-conducting bodies, to scattering surfaces characterized by the 

impedance boundary condition.   Properties of the Matrix inversion associated 

with the determination of the expansion coefficients from far field data are dis- 

cussed.   Some numerical results are presented, and restrictions upon the choice 

of aspect angles are deduced. 
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INTRODUCTION 

A brief review of the salient features of the theoretical investigation 

of the c.w. bistatic inverse scattering problem is presented in section II. 

In section III the effect of changing the origin of the coordinate system 

upon the convergent properties etc., of the spherical vector wave function 

representation of the near scattered field and the surface loci  E x E* = 0, 

is considered. 

In section IV, a discussion upon the determination of the surface of the 

scattering body from knowledge of the local total electric field is given.   Em- 

phasis is placed upon the generalization of the condition E x E* = 0  as applied 

to perfectly-conducting bodies, to scattering surfaces characterized by the 

impedance boundary condition. 

In section V, properties of the Matrix inversion associated with the 

determination of the expansion coefficients from far field data, are discussed. 

Some numerical results are presented, and restrictions upon the choice of aspect 

angles are deduced. 



REVIEW OF INVERSE SCATTERING THEORY DEVELOPED FOR 

C.W. BISTATIC SYSTEM 

2.1   THE PLANE WAVE EXPANSION 

It is shown here that the total field produced by a plane wave incident 

upon a scattering body, can be expressed as the sum of two terms, the incident 

field and the Fourier transform of a quantity which is related to the scattering 

matrix.   The resulting expression is valid for all points in space Including the 

interior of the scattering body. 

To begin, the analysis will be restricted to non-magnetic bodies (although 

it could be easily generalized to include such cases) and the geometry of the 

scattering body will be limited by placing certain restrictive analytical properties 

on the surface  S which encloses the volume  V  of the scattering body.   The 
3 

classes of surfaces chosen, will belong to class  C    defined by Barrar and 

Dolph as follows: 
3 

A surface   S  is said to belong to class   C     if there exists a finite number 

m  of images,   x   =x (u,v), y   -y (u,v), z   =z  (u,v), Vs 1.2.3. . . m  of the 
2       2 disk u   + v <  1  that cover the surface  S, and such that the third derivatives of 

x , y   and z    with respect to  u and v exist and are continuous. 

Harmonic time dependence exp(-iwt) will be taken in which case Maxwell's 

equations become 

V AE   =  ik In /e H /  o'   o      - 

I k   I     inside the body 
prjr VAH = -i<E/k) \ 2 > 
' (k   )     outside the body 

2 
where  k   , the square of the propagation constant in the body, is given by 

2 2 
k,   =u   e,M   + iWM o. . 1 1  o o  1 



The incident electric intensity will be expressed in the form 

E1 - (2,r3/2 a  e1* " * (2.1) 

where  k  is the direction of the incident wave, and a , the unit vector denoting 

polarization. 

The homogeneous body will be treated first.   In this case, it follows 

from Barrar and Dolph, that the total electric intensity  E   induced by the plane 

wave Eq. (2.1), incident upon the body, satisfies the following integral equation 

(which has a unique solution) 

E(x)   =   E (x) + 
47T 

0 E dv 

>•    V 

0(E~-n)ds 

(2.2) 

where 

ikR 

~R~ 
R = (x- x') 

and  E     is the value of  E   obtained by approaching the surface from the interior 

of the body.   If  E     is the value obtained by approaching the surface from the 

exterior of the body, it follows from the continuity relations that 

,2   „- k    E  • n 
2     + 

k    E  • n (2.3) 

The appropriate expression for the magnetic field is given by 

(3 - *2) H(x)   =   H (x) + 
-   - 47T iu/u 

(2.4) 

Before deriving a plane wave representation for   E (x), the following 

vector will be introduced. 



T(k..».^P   i      I 6-^2'  E(xMOdv.-  <£     /   e^'i'E-.ad.. 

(2.5) 

From Eq. (2.2), it is seen that when |x| -* oo ,   in the direction given by the 

vector k' , then the total field becomes 

j—      ikjx| 
E(x)      ~      El(x)+ H      ^-j—P      T(k',k) (2.6) 

I x|-»oo ' - ' 

indicating that the vector  T (k1, k)  is related to the scattering matrix.   When 

Ik'l   =  | k| ,    T(k', k)   is a measurable function being proportioned to the far 

scattered field in direction  k' , which is produced by a plane wave of frequency 
A 

ck ,   incident upon the body with direction of incidence given by k .   The following 

theorem may now be proven. 

Theorem: 

tf       ^QS'-JO   •     kr0 e"1-'-    E(x,k)dx   , 
(2jrr/Z 

(2.7) 

T (k' k) 
then      ^(k'-k)   =    6(k-k')a-    lim '~         . (2.8) 

e -v o      k   - k'   + ie 

Proof: 

It follows from Eq. (2.2) that 

ft - ^ 
£<k',k)      6(k-k')a+ —l—    V ~^77     /    £(*'-M   \ e~l-' - 0 dx dv 

4* I (2,)3/2 

k2      J     <2„)3/2 

-ik'-x 
V   •       /     0  (E~-n)   ds 

'S 



On setting 

ip I     0(E~.n)ds 

S 

one can show that 

-ik'- x  _ .   , .. / -ik'- x    ...... -Ik1* x . 
e   —   —  V \p dx   =     lim e   —   —    ip ds + 1 k'     | e   —   — \p dx 

CD O 
CO 

when S      is the surface of a sphere of radius  R     .   Letting k  have a small 
CO CO 

imaginary part, it is seen that the surface integral will vanish when R -v co . 
CO 

The resulting integrals can be reduced as follows 

ijg • (x - x') - ik'- x i^^/r-v <*<* ,,   .3/2       /  * *"i   "      ,     ,,   .3    JJ"*"* 2       2     . 
(27T) ' J (27r)      * p   - k   - le 

u p - k - ie 

-ik'- x 
2      e   -   ~ 

k2-k'2 + ie 

Combining the above expressions, one obtains the result 

6(k-k")a-    lim 
9, . . T(k',k) 
C (k»- k) 

2 2 
e —y o       k   - k'   + ie 

As an immediate consequence of the above theorem, the total field everywhere 

in space including the interior of the body,can be expressed in terms of the incident 

field and the quantity  T(k',k)» as follows 



E(x,k) =   E^x, k) +  
<2,)3/2 

'    i£- x 
^2 2    X <JB-^> dJ2    • (2.9) 
p -k 

If the integration space p  is expressed in spherical polar coordinates (p, 9 , 0 ) 
P   P 

where the range of the variables are  -co<p<oo,O<0   <7r/21 and 
0 < 0   < 2n , then in the above integral, the contour of the variable  p bends 

above the pole at  p = -k, and below the pole at  p = k . 

It can be shown in a similar manner that the magnetic field can be 

expressed in a similar form 

H(x,k) =Hi(x,k)+  1—2T2      1*2 r'  £AT(£,k)df       . (2.10) 
u^i (2JT) '       V  p - k 

o 

The above results were derived for a homogeneous body.   The results 

may be extended to include inhomogeneous non-conducting bodies, i.e. where 
2      2 2 

k   = w e/i (a real function) and k    varies continuously in the medium.   In this 

case, the appropriate integral equation for the total electric field is (Barrar and 

Dolph) 

E   •  E*+ ~    /   0 (k\ - k
2) E dv- -\   j   0   (g . k

2)  (E". n) ds 

*   I     /(**•) _L 
k

2"V 

Unfortunately from the standpoint of rigor, only the uniqueness of the 

solution of this integral equation has been proven. It's existance has not yet 

been shown. 

Additional relationships involving  T (k', k)   have been shown in 

8579-4-Q (1968),       among which is an integral equation involving  T (k\ k) 



and the Fourier transform of the body. 

2.2   ALTERNATIVE REPRESENTATION FOR POINTS EXTERIOR TO THE BODY 

For a fixed direction of incidence and frequency, the quantity  T (k', k) 

is required for all values of k' ,   in order to obtain expressions for the field 

everywhere in space.   Unfortunately, for fixed k,   T (k', k) is a measurable 

function (far scattered field), only for values of k'   such that   k' J = I k |   . 

However it will be shown that restricting the requirements on the knowledge 

of  T (k', k)  to the values of k'   which lie on the sphere | k' \ = | k|, the total 

field can be obtained everywhere outside the minimum convex surface enclosing 

the body.   To show this, let the plane   z = z    be the tangent plane of the body, 

such that the body lies in the half-space   z < z    .    For points in the half-space 

z > z , the following representation of the near scattered field 
o 

ES(x) 
(2?r) 

3/2 

lp • x 

2     i2 
p   - k 

T (JD, k) d£ (2.11) 

can be reduced as follows: 

Set        p   = k sin a cos 6 

p   = k sin a sin B 
y 

Pz=kq 

when the domains of integration are 

0<  B<  2n ,        0 < a <  ir/2 - ioo ,    and-oo<q<co 

Expression (2.11) becomes 

7r/2 - ioo    r 2-n     0 oo 

(2TT) 
3/2 

T(£,k) 

-co 
"2 2 ~ 
q - cos a - 16 

g(a, 8, q) coso'sino'do'd^dq, 

g   =   exp < ik sin a (x cos /3 + ysin/3) + iqzk }• (2.12) 



From expression (2.5), it can be seen that for  z > z , the contour in the 

following integral 

P oo 

-oo 
2 2 q   - cos a- ie 

may be deformed, to yield the following 

ilc cos ct z 
IT i e T (k sin a cos /3, k sin a sin /3,   k cos a; k)    . 

Hence expression (2.12) may be placed in the form 

E 
ik 
2ir 

ik'- x 
e —   —    E   (a, j3) sin ttdffd)3 (2.13) 

where 

k'   =  k (sin a cos /3, sin a sin /3, cos a) 

and  E     is the amplitude and phase of the far scattered field in direction given 

by (9,0), i.e. 

ikR 
E8^-^—   EQ(6J) . (2.14) 

Thus it can be seen that for c.w. bistatic scattering, where   E   (0,0) is 
—o 

a measurable function, the scattered field for all points in the domain  z > z   , 
o 

can be obtained from expression (2.13) provided that the analytic continuation 

of E   (d, 0)  can be computed for complex values of 9 , from knowledge of real 

values of 9 .   It has been shown (Weston, Bowman, Ar,  1966 ) that the analytic 

continuation to complex values of 9  is possible provided that E   (9, 0)   is 
—o 



known over the complete domain  0<d<n,0<$<2iri and a procedure 

for doing so is presented. 

By rotating the coordinate system, equivalent expressions to (2.13) 

may be derived which yield the scattered field everywhere outside a different 

half-space excluding the body.   Since the union of all the half-spaces exterior 

to the body is bounded by the minimum convex surface enclosing the body, it 

can be deduced that the scattered field at any point outside this convex surface 

can be obtained from the knowledge of the far field bistatic data (measured 

over all angles). 

At this point, it should be mentioned that expression (2.13) is not the 

only expression that can be used to evaluate the near scattered field from far 

field data.   It has been shown that expression (2.13) can be re-expressed in 

terms of an expansion of the spherical vector wave functions.   For a fixed 

region of the coordinate system, the expansion will be convergent down to at 

least the minimum sphere enclosing the body.   Alternatively it was shown 

(8579-2-Q) that expressions (2. 13) could be placed in the form 

ikR     ^—i 

where   E     are derived from the   E       by a recurrance relation (Wilcox expansion). 

2.3   EXTENSION OF THE DOMAIN OF CONVERGENCE AND THE CONCEPT OF 
EQUIVALENT SOURCES 

It was shown above that for a fixed direction of incidence (fixed transmitter 

position), one could derive the near field everywhere outside the minimum convex 

surface enclosing the body, from measurements of the phase, amplitude and 

polarization of the far scattered field made over all directions.   This result 

has been extended.   Considering representation (2.13) it was shown that it was 

convergent down to the tangent plane   z = z ,   and represented the scattered 

field everywhere on the half-space  z > z   .   However for perfectly-conducting 



smooth convex bodies, it has been shown (Weston, Bowman, Ar, 1966) that this 

expression was convergent down to the plane   z = z* where   z* > z   , where 

the value of z* depends upon the global geometry of the body.   Since the true 

total field displays a discontinuity across the physical surface of the body, 

expression (2.13) combined with the incident field, cannot represent the true 

field in the intersection of the half-space  z > z* and the volume of the body. 

Therefore in this region, expression (2.13) is said to represent the field 

arising from a set of equivalent sources.  In particular it was shown that equivalent 

sources for a prolate spheroid lie on a line joining the focal point, and for a 

sphere, the point at the center.   Thus for smooth convex bodies, the domains 

of convergence are not limited by the minimum convex surface enclosing the 

body, but by a much smaller volume, that is contained by the minimum convex 

surface enclosing the equivalent sources.   As an example, for the prolate 

spheroid with its center lying at the origin of the coordinate system and oriented 

so that its major axis lies along the z-axis, representation (2.13) is convergent 

in the half space  z > c , where  c   is the focal length, and both Wilcox's 

representation and the representation involving the vector spherical wave functions, 

will be convergent down to the sphere of radius   c. 

The extension of the domain of convergence will hold for piecewise 

smooth conducting bodies.   However the minimum convex surface enclosing the 

equivalent sources must enclose the curves or points of surface discontinuties 

such as edges. 

For cavity regions that penetrate the minimum convex surface that en- 

closes the equivalent sources, alternative representation for the scattered or 

near field must be employed.   Such representations will not be of the exterior 

type, the plane wave representation (2.13), the expansion in vector spherical 

wave functions, or Wilcox's expansion, which are based upon knowledge of the 

far scattered field as a starting point, but must be of interior type, i.e. based 

upon knowledge of the total field in a domain adjacent to the body.   Such 

10 



representations    are     only convergent in a finite volume.   One particular type 

of such a representation is given in 7466-1-F (Weston Bowman, Ar, 1966). 

2.4  DETERMINATION OF THE SURFACE OF PERFECTLY-CONDUCTING 
BODIES. 

Given expressions for the total field (obtained from far field data) 

which can be computed in the vicinity of the surface of the body, the next step 

is to employ techniques which will locate the surface of the body.   For perfectly 

conducting bodies, the tangential component of E (the total field) must vanish. 

This implies that at a point on the surface  E = n £   where  n  in the unit normal 

to the surface and   &   is a complex quantity.   For a general point in space the 

total field can be decomposed into the real vectors &    and £     as follows 
I R 

5 - £„<       • 
For a point on the surface c rA n = 0 and c    A n = 0, which implies that 

£r A 5 TJ 
= 0 • Thus a necessary condition for a point to be on the surface of a 

I R 
perfectly conducting body is that, at that point, the total field must satisfy the 

condition 

E A E*= 0 , 

when  E* is the complex conjugate of  E .   The advantage of this condition is 

that it is a local condition,  requiring only the calculation of the total field at 

the point in question.   Since the above condition is not sufficient, additional 

requirements would be required, such that  E x E* must vanish at adjacent points 

x and x + Ax ,   and that 

E (x) • A x 
lim        -=r=—:——    =  0 

Ax^O lA^l 

which implies that  E   is normal to surface.   In addition, the resulting surface 

firmed by the set of points must be closed.   However, even if a surface  S 

11 



was found such that it satisfied these conditions, it would not necessarily be 

the correct surface.   Since for the enclosed volume formed by two closed 

surface, on which n x E  vanishes, there is a discrete spectrum (in frequency), 

this implies that at a particular frequency, there may exist additional surfaces 

S    for which n x E vanishes.   However the geometry of the additional surfaces 

depend upon frequency, and these can be separated out from the proper surface 

by employing at least two different frequencies. 

For the illuminated region of the body, an auxiliary condition was de- 

veloped which considerably helped discriminate the proper surface from the 

loci  E x E* = 0.   This condition given as  |E / - |E   |  = 0 , yields an approximate 

surface, which approaches smooth convex portions of the correct surface in 

the limit of high frequency scattering. 

From the numerical standpoint where there are errors due to input 

information, etc., it was demonstrated both theoretically and numerically 

that the condition E  x  E* = 0, should be replaced by finding the minima of 

ExE*|   . 

2.5   FAR FIELD INFORMATION LIMITED TO A SOLID ANGLE. 

For most practical solutions, the far scattered field (phase, amplitude 

and polarization) is measurable only over a region of limited bistatic angles. 

In this case it is important to know what information can be determined about 

the body., where measurements of the scattered far field are confined to a 

limited domain of aspect angles.   This in turn depends upon the accuracy to 

which the near scattered field can be computed using the limited far field data. 

A general discussion of this latter point is presented in 8579-1-Q.   However, 

the employment of high frequency asymptotic results yields a far more illuminating 

picture (8579-2-Q).   These results will be briefly presented here.   When the 

scattered far field is measured over a limited aspect region (example: the cone 

0 < 6 < 6   )j the analytic continuation of quantity  E    (a, /3)   given in expression 

(2.13), cannot be found for the complete complex a  plane.   In this case the 

12 



following approximation to expression (2.13) will be employed 

2TT re 
,s ik 
-    -   2T 

ik'. x , 
e-   -  E    (a, j3) sin a d a d j3   .        (2.15) 

0 J 0 

For the case of the perfectly conducting sphere of radius  a , illuminated by 

the plane wave 

_,i       A   -ikz 
E    =  x e 

the geometric optics scattered far field has the form 

EQ(a,/3)   =   - |    e  (a,/3)   exp   [-2ika  cos  (a/2)~\ 

where 

A,.AT 2 2 ~|      A   r ~l 
e (o-, j3)   =  x   |_cos a cos £ + sin /3J - ^   |_1 - cos a J   sin /3 cos /3 - 

- z sin a cos 0   . 

From relation (2.15) the near scattered field is given approximately by 

T27T   no 

ES(x)   =  -^. }ikf(aJ,S)|(^^)ginadad^    ^ (216) 

0     » 0 

where 

f (a, /3)   =   r   I sin 0 sin <? cos (0 - ,8) + cos 0 cos o-J   - 2 a cos -    . 

As  k-^oo, the dominant contribution to the integral arises from the vicinity 

of the stationary phase point  (/3=0, a=a)  where  a    satisfies the equation 

r sin (a   -6)   =  a sin ( — ) 
o v 6 ' 

13 



provided that  0 < a   < 6     .By means of first order stationary phase evaluation 

we obtain immediately 

E8(x) D(o) 
EKs) 

1/2 iks - ika cos 

where 

D(s) 

e (a , 0) e —    o 

C-f + 2f)(j 

(f) 

2s 
1 + — cos f) 

The distance  s  given by the relation 

s   =  r cos (a   - 9) - a cos 
o Ct) 

is the distance along the reflected ray from the point of reflection.   The resulting 
*s, 

expression for  E (x)   is the geometric optics near field expression.    When the 

far field information is limited to the cone  0 

will be limited to a volume of space such that 

far field information is limited to the cone  0 < 6 < 6   ,   the near field expression 

r sin (a   -6)   -  as *(f) 0 < a   < 6 
-    o —    o 

(2.17) 

where  (r, 0t 0)   are the coordinates of a point in this volume.   In order to find 

the portion of the scattering surface which can be determined, set  r = a, in which 

case it is seen that 

a 
e = —,      o < a < e      . 

Z —   o        o 

This then implies that the near scattered field given by expression (2.15) can be 

found on the portion of the sphere given by the cone   0 < 6 < 0  /2 .   For points 

outside the volume of space given by Eq. (2.17), stationary phase techniques 

cannot be employed, in which case the asymptotic approximation to Eq. (2.16) is 

14 



obtained by alternative means. 

The above example illustrates the fact that in the case of high frequency, 

asymptotic evaluation of expression (2.15) is equivalent to tracing back the rays 

to the portion of the scattering surface from which they arose.   The result 

is not confined to just perfectly smooth convex shapes but can be applied to piece- 

wise smooth convex shapes, the far scattered field is decomposable into components 

of the form 

^-, ik 0   (0, 0) 
EQ<e,0)   =   2_|    £n(0,0)   e 

n 

and stationary phase evaluation of the expression (2.15) for each individual 

component, effectively traces back the various rays to their originating portions 

of the scattering object.   The result is applicable to flat portions, in which 

case the far field component approaches a delta function of the angular variables 

as   k -> oo .   The example of the flat plate given in 8579-2-Q illustrates this. 

15 



Ill 

EFFECTS OF A DISPLACED   ORIGIN ON CONVERGENCE PROPERTIES 

In employing the Wilcox theorem or the vector spherical wave function expansion, 

it can be shown that the near field representation, derived from the far scattered 

radiation pattern, is uniformly convergent for all points outside the minimum 

sphere enclosing the equivalent sources of a smooth convex shaped body.   From 

the knowledge of the near field everywhere outside this minimum sphere,  it is 

sought to find the associated scattering surface by proper application of suitable 

boundary conditions.   These Inverse Scattering Boundary conditions, in general, 

ought not involve any constituent parameters (surface normal n , surface locus 

S(x, y, z), relative impedance  r) ) of the unknown scatterer and must be given 

solely in terms of the known nearfield representations of the incident and the 

scattered field with respect to a fixed origin which lies within the scatterer. 

For a perfectly conducting surface it was found that the following two boundary 

conditions can be successfully applied: 

a) 
{|Ei-|E8|} 0 (3.1) 

i s 
where  E    denotes the incident field and  E    the nearfield representation of 

the scattered field.   This boundary condition represents the geometrical optics 

limiting approximation and in general,  is applicable only within a narrow cone 

about the specular point (8579-3-Q,  8579-4-Q). 

(   T        T*") T i «? 
E    xE      j=0, where    E      =   E   +E (3.2) 

This boundary condition was derived by V. H. Weston (Final Report 7644- 1-F, 

Weston, Bowman, Ar).   Although it is only a necessary but not sufficient condi- 

tion, namely producing a family of concentric surface loci in addition to the 

proper one, its application together with  ]|E | - |E 11 =  0   proved to be 
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indispensable since that portion of the proper locus within the conical section 

exterior to the Wilcox minimum sphere can be determined with great accuracy 

for a minimum number of expansion terms,   (8579-3-Q, 8579-4-Q). 

To be more precise, the combined boundary conditions will yield the 

proper surface locus only on those portions of the surface for which the chosen 

expansion for the scattered field is convergent,   for a prolate spheroid, the 

boundary conditions applied to the complete vector spherical wave function ex- 

pansion associated with the origin located at the center of the body, will yield 

portions of the surface outside the sphere   r = c   where   c   is the semi-focal 

length.   In order to obtain the side portions one has to displace the origin in 

the plane passing through the center of the body and perpendicular to the axis of 

the body.   Thus in  using far field data one needs to know the domain of convergence 

of the expansion.   Generally this can be only obtained if the complete expansion 

were known, which in practice is not achievable since the number of receiver 

locations will be a finite number.   If the domain of convergence is not known, then 

the application of the boundary conditions to the expansion may yield some correct 

portions of the body, but what the correct portions are cannot be prescribed unless 

some additional condition is employed.   However  if it was known apriori that the 

origin of the coordinate system was located at the center of the body, and the portions 

of the body farthest removed from the origin where smooth and convex, then the 

application of the boundary condition will yield the correct surface locus (to within 

some numberical error) for these portions.   Thus if the approximate location of 

the origin was not known, some additional criteria should be employed, such as 

the one described below. 

A possible additional condition would be to displace the origin of the 

coordinate system, and on employing the boundary condition to the scattered field 

expansion derived in the displaced coordinate system to obtain a new surface 

locus, one would  then determine the shift in the surface locus due to the displace- 

ment .   If the shift is negligible for portions of the surface, then those portions 
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may be the proper surface.   For example, if the origin of the coordinate 

system located at the center of a prolate spheroid, was shifted slightly 

down the axis, the loci for the top and bottom of the prolate spheroid derived 

from the boundary conditions applied to the near field expansions,  should be 

the same as before the shift.   These remarks are strictly qualitative.   A 

quantitative study should be made  and is outlined below. 

Let x  represent the points in a cartesian frame of reference the origin 

of which is located in the vicinity of the scattering body (its precise location 

was not established)    Let a plane wave be incident upon the body producing a 

scattered field, the far field 

ikR 
ES ~   -^-   EQ (0, 0) 

being measured at a finite number  (N) locations     i 0 , 0  f .   Let  E  (x, N) 
v. n     n) -    - 

be a finite expansion of the near field derived from the far field data (the  ex- 

pansion may in vector spherical harmonics, or a Wilcox type expansion) 

Suppose that the origin is displaced a distance    d,   such that if x' 

represents a point in the displaced coordinate system then 

x' =  x  +   d 

In the displaced coordinate system, the far field directions    i 0 , 0  r   remain 

the same,     (i.e.     for   R'—»oo,     0' = 0,   0' ^ 0), however the far field quantity 

E'   (0', 0')  is related to    E    (0, 0)  by the relation 

E'    (0', £')   =   E   (0, 0)exp(-ik   d) 

where  k  is a vector in the radial direction.   Let    E'   (x', N)  be a finite ex- 

pansion of the near field derived from far field data (N receivers) in the displaced 

coordinate system. 
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If x  is a point in space where the complete (N = oo)  expansions are 

convergent the difference 

ES   (x, oo)   -  E' (x + d, oo) 

would be zero.   However when a finite number of terms are used in the expansions 

(finite number of receivers) the difference will not be zero, except of course at 

the receiver positions in the far field.   Thus it would be fruitful to determine 

quantitatively a number    6 (d)  such that if 

lim 
d—»o 

ES(x) - E'S(x+d) 
d < 6 AIE1 

where  E    is the incident field, the application of the boundary conditions 

on the total field at points  x  for which the above inequality holds will yield the 

correct surface to a specified degree of accuracy. 

Such a condition given above may have to be obtained through numerical 

examples. It will depend upon what expansion for the near field is chosen, and 

how the expansion is matched to far field data (i.e., by matrix inversion, least 

squares, or otherwise). 

To obtain the portions of the surface outside the domain of convergence 

(if the complete expansion were used or outside the domain given by the above 

inequality for a finite expansion, the origin of the coordinate system would have 

to be significantly changed.    For this new location of the origin, the domain 

validity of a finite expansion would have to be chosen by displacing slightly the 

origin and employing the above inequality. 

Some initial investigations of the effects of displacing the origin for a 

finite expansion in vector spherical wave functions, upon the surfaces derived 

through the boundary condition    ExE    =0,   is discussed in internal memo 

(W. Boerner).   However, this memo is just an initial attempt to understand the 

problem and will not be reported here. 
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IV 

ASPECTS ON CONTINUOUS WAVE INVERSE SCATTERING BOUNDARY 
CONDITIONS FOR THE DETERMINATION OF THE 

SHAPE AND THE MATERIAL CONSTITUENTS OF A CONDUCTING BODY 

4.1   INTRODUCTION 

Although methods have been outlined on how to determine the material 

characteristics of a conducting body, employing the monostatic-blstatic theorem 

(7644-1-F, Chapter XI), no suitable method has been found so far which will 

simultaneously determine the shape and the associated material constituents 

of an unknown body, since the inverse scattering boundary condition 

( ET x ET* = 0, where  ET = E* + E_S }   , derived by Weston (7644-1-F, 

Chapter X) holds only for the case of a perfectly conducting body.   This condi- 

tion   ^ExE    =0j, though necessary but not sufficient, may however be 

considered as a first step of formulating a more general c.w. Inverse Scattering 

Boundary Condition. 

An attempt of generalizing this condition will be prescribed in this section. 

Before any C. W. I. S. boundary condition can be applied, a suitable near field 

representation of the scattered field from the measured far field radar data 

must be sought.   This can be achieved by either employing a series expansion 

into proper vector wave functions and if so required their associated plane wave 

integral representation (7644-1-F, Chapter V; 8579-1-Q, 8579-2-Q) or an 

expansion method derived by Wilcox (1956) and Miiller (1956) as discussed in 

7466-1-F (Chapter IV).   The associated expansion coefficients may be obtained 

from a matrix inversion technique (8579-2-Q and 8579-1-F).   Assuming that 

such a sufficiently accurate nearfield representation of both the electric and the 

magnetic field vector is found, the question of how to derive suitable I. S. boundary 

conditions arises which as well can be applied to the determination of the character- 

istic parameters of conducting bodies and their shapes. 

In contrast to problems of direct scattering and diffraction for which 

the shape and the material constituents of the scatterer are assumed to be known 

a priori together with the prespecified incident field vector  E    as regards the 
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computational coordinate system and thus may be incorporated into the boundary 

conditions, in problems of inverse scattering such boundary conditions must be 

sought which in particular do not depend upon either the shape or the material 

properties of the scattering body and its enclosing surface, but allow to specify 

those characteristic parameters uniquely.   And this solely from the near field 

representation of the electric and the magnetic field vectors, derived from the 

measured far field data as described above.   Now the question arises as to 

how many and which characteristic parameters must be defined to uniquely deter- 

mine the shape and the material constituents of the unknown scatterer.   In the 

scalar case it is sufficient to employ the following parameters: 

i)  the local surface normal n (R, 0, 0) of the proper surface, 

ii)  a relative surface impedance  rj (R, 6,0)  which is a scalar quantity, 

or the interior propagation constant  k.     (R, 0,0). 

Thus at least three independent characteristic equations, solely expressed in 
T       i       s T       i       s 

terms of the near field quantities  E    = E  + E    and  H    = H + H   ,   must be 

found to determine the surface locus  S (R, 6t 0)  and the surface impedance 

n = | n I exp i $ . 

Whereas in the vector case the relative surface impedance must be 

formulated in dyadic or tensor formulation, involving a further unknown parameter 
A A 

which may be described by a local polarization angle  e (R, Qt ft; k. , e )  or 
*       A 

a local depolarization angle  6 (R, 6,0; k , e ).   These angles can be expressed 

in terms of the surface normal n (R, 6t 0)  as well as the unit direction vector 
» A A 

of the incident wave  k   and its associated polarization vector  e   .   Thus the 

impedance dyadic  17 will be a function of both the material properties of the 

scattering surface, the surface locus  S (R38,0)  or its associated local normal 
A A A 

n (R, d, 0),   and the prespecified properties  k , e    of the incident wave.   This 

additional complication may ask for one or two more independent characteristic 

equations for the elimination of e   or  6 . 
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If such a set of independent scalar and vector equations exist which can 

be employed to uniquely determine the surface locus  S (R, 0, 0)  and the material 

characteristic  r\ ,   then one may argue that the  I.S. boundary condition 
X       T* 

E    x E    =0  may constitute the remaining part of such a set of independent 

equations for the degenerate case of r] = 0 .   With this goal in mind more de- 
r x       X* T       i       s") 

tailed properties of < E    xE     = 0, E    xE+Ej will be discussed next, 

as well as properties of the Leontovich boundary condition and its complementary 

formulations.   Then it will be shown that for the scalar case a set of independent 

scalar and vector equations can be derived, based upon the concept of describing 

the material surface properties by a Leontovich boundary condition, which will 

in the limit as  r\ = 0 , degenerate in 

by Weston in 7644-1-F (Chapter X). 

X       X* 
in the limit as  r\ - 0 , degenerate into the condition  E    x E     = 0  as derived 

X       x* 
4.2   THE C.W.I. S. BOUNDARY CONDITION   E    xE     =0   FOR THE DEGENERATE 

CASE OF A PERFECTLY CONDUCTING SCATTERER, i.e.   r\ = 0 . 

In chapter X of 7644-1-F, the necessary but not sufficient condition 
X       x* 

E    x E    =0 was derived intuitively based upon the physical properties that the 
fp | Q A T 

total field  E    = E  + E     must satisfy the boundar y condition  n x E    = 0  on 
A 

the surface of a perfectly conducting body, and since the surface normal  n is 
X X       T* 

a real vector also  E     cannot be of complex direction, thus   E    x E    =0. 

The application of this boundary condition is verified for spherical and prolate 

spheroidal test cases in 8579-3-Q and 8579-4-Q, together with the condition 

j JE ) - J E / j= 0  as derived from the geometrical optics approximation.   Both 

conditions yield the most accurate results if the incident polarization is parallel 
i        s 

to the generators of the scattering body, since then  E  + E   = 0  identically. 
X       x* 

Although  E    x E    = 0   is only a necessary condition but not sufficient in that 

an infinite set of exterior concentrical (hyperbolic) surface loci, and for scatterers 

of larger electrical measure  ka  a limited set of interior pseudo loci (emanating 

from the associated interior caustic) in addition to the proper one are generated, 

this proper surface locus can be determined with least error.   In fact, in 8579-3-Q 
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X       T* 
and 8579-4-Q, it is verified that with  E    x E    =0  the proper surface locus 

can be identified more accurately as with the condition  IE I  -  [E  | = 0  for 

which only one locus is obtained, however with pronounced deviations from the 

proper one (8579-4-Q).   The family of resulting surface loci  of E    x E    =0 

are equidistantly spaced, concentrical hyperboloids with AX = kAR = 7r/2 

spacing along the axis of symmetry for rotationally symmetric bodies with 

end-on incidence.   The resulting plots for one and the same scatterer versus 

the electric length are identical for different frequencies.   If however, the 

resulting loci are plotted versus the geometrical length  R = X/k , then it can 

be shown (8579-4-Q) that the proper surface locus is stationary whereas all the 

other interior as well as exterior additional loci will shift, since the proper 

surface locus is independent of the wavelength and all further loci correspond 

to a discrete set of eigenfrequencies (7644-1-F, chapter X).   Thus the application 

of the boundary condition  E    x E    = 0  at only two different frequencies may be 

sufficient to uniquely determine the shape of a smooth convex-shaped, perfectly 

conducting body in those regions which are exterior to the Wilcox minimum 

sphere.   Those portions of the scattering surface within the Wilcox minimum 
>p       <p# 

sphere can be determined with  E    x E    = 0  as well, but not with the condition 

/l^/   " I 5 M ~ 0 > if properties of displacing the computational origin from the 

geometrical center are employed at two different frequencies by matching the 

geometrical length of the displacement vector so that a stationary surface locus 

within the angular domain along the direction of the displacement vector is 

found, (8579-1-F ). 
T       T* 

Thus the boundary condition  E    x E    =0  must be considered indispensable 

in computational problems of C. W. Inverse Scattering as applied to the identi- 

fication of smooth, convex-shaped, perfectly conducting bodies. 

Finally the question arises whether the boundary condition  E    x E    =0 

may not bear more physical information and whether its generalization to conducting 
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bodies may reveal a relationship with Maxwell's Stress-Energy Tensor at the 

bounding surface of a scatterer. It was therefore attempted to employ the Leontovich 

boundary condition of the scalar case to study this question in more detail. 

4 .3   THE LEONTOVICH BOUNDARY CONDITION AND ITS VARIOUS 
COMPLEMENTARY FORMULATIONS. 

In problems of C. W. inverse scattering, the concept of an impedance 

boundary condition may be employed to its best, if such an impedance can be 

defined so that it describes the averaged local electromagnetic properties of 

the unknown scattering surface.   The boundary condition (4.3.1), known as 

Leontovich condition (Leontovich,  1948) suggests to offer the desired formula- 

tion for the scalar case: 

ET-(n • ET)n  =  rj ZQnxHT (4.3.1) 

where 

ET = E1 + ES , the total electric field 

T       i        s 
H    = H + H   , the total magnetic field in the region surrounding 

the body. 

/?-t '    o o 
Z   =   /—     =   TT—  =   120 7r f2, the intrinsic impedance of 

o     J e Y * free space, 

n = n *, the unit outward normal as regards the surface which 
is a purely real vector. 

rj , the relative impedance, a complex scalar quantity, designated 
as Leontovich impedance. 

The degenerate cases for which (4 3.1) is not applicable are treated in detail 

in Senior (1959,  1962) and Weston(CAA-0020-10-TR) and will be excluded from 

further discussion.   The direct application of (4. 3.1) would imply the a priori 

knowledge of n = n (R, G, 0)   and  r\ - r\ (R, d, 0).   Thus other formulations of 
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(4.3.1) are required which, however, must contain identical information such 

that the surface locus  S (R, Q, 0) and rj (R, 0,0) can be found solely from 
T T E    and  H    .   The first additional equation is found by applying a vector product 

operation of n onto (4.3.1), yielding 

ETxn   =  rj ZQ   [HT-(n-HT)n] (4.3.2) 

which merely represents an alternative statement of (4.3.1) and may be rewritten 

with ? = I/17     into 

HT-(n-HT)S  =  -?Y   (DXE
T

) (4.3.2a) — — o — 

T T 
and thus corresponds to (4.3.1) under the transformation  E    -» H   , 

T T 
Z   H   -> - Y   E  )  and r\ -*• C, where  C  denotes the relative admittance, 

o - o — 

Senior (1962a) has shown the affinities of this transformation with Babinet's 

principle and has proven the invariance of this transformation, attributing r\ 

to the material   constituents of the body. 

In addition to (4.3.1) and (4.3.2) its conjugated formulations will be 

introduced as: 

T*       A        T*  A A        T* 
E-(n-E)n   =  rj*ZnxH (4.3.3) — — o        — 

and 

T*  A r   T*     A       T* A~1 
E1 xn  =  rj*Z       H1   - (n • H1 ) n (4.3.4) 
— o L — -1 

TH*-(n- H^nl    =  - ?*Y   (nxE1*) . (4.3.4a) 
L— — O _ 

The validity of statements (4.3.3) and (4.3.4) must strictly assume 
T T 

that all implied field quantities  E    and  H , as well as the relative impedance 

or 
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r] = r\ (R, 9, 0) are analytical functions, and n = n (R, 0,0) is piecewise continuous, 

satisfying the set of linear equations (4.3.1) and (4.3.2) which in turn satisfy 

Maxwell's equations.   The particular constraints on r)  and  n for which this is 

not the case are discussed by Weston (CAA-0020-10-TR), and scatterers of these 

particular features will be excluded.   The conjugation of (4.3.1) and (4.3.2) 

solely implies the reversal of the reactive character of all implied electromagnetic 

quantities, thus the pair (4.3.3) - (4.3.4a) bears similar affinities as does the 

pair (4.3.1) - (4.3.2a), now however, for a surface of reversed reactive character. 

Assuming that the electromagnetic behavior in the vicinity of a scatterer 

satisfies the Leontovich boundary condition (4.3.1), the question must be 

answered whether a set of scalar and vector equations can be derived from the 

complementary set (4.3.1) to (4.3.4) of the Leontovich boundary condition 

which may be employed to determine the surface locus  S (R, Qt 0), the surface 

normal  n (R, d, 0), the relative surface impedance  17 (R, 6,0)  solely from the 
T T 

knowledge of the near field representations of E     and  H    .   This may be 

achieved by proper scalar and vector product operations of (4.3.1) to (4.3.4) 

onto one another which must result in the following set of independent equations: 

i)  A vector or scalar equation which ought to be independent of 17  and 

may thus determine the surface locus  S (R, 6,0) of the unknown target. 

This equation may possess a discrete set of additional solutions, 

resulting in a family of concentric surface loci. 

ii)  A set of independent scalar equations necessary to define both the 

amplitude / r\ \ and the phase  r}//n/= exp i 0 of the relative surface 

impedance.   These equations should result in a pair of quadratic equations 

such that a fourfold complementary solution is obtained, corresponding 

to the complementary character of equations (4.3. 1) to (4.3.4). 

iii)  A closed form expression for the surface normal  n , which must 

yield a purely real vector quantity and ought not depend upon  17 , 

otherwise the correct solution of 17, satisfying (4.3.1) cannot be found. 
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To this end the scalar formulation of the Leontovich boundary condition 

was considered only which in general cannot be employed for problems of inverse 

scattering as applied to the determination of the shape and material constituents 

of closed convex-shaped bodies.   The vector wave nature of the inverse scattering 

problem requires the definition of a dyadic formulation of the relative impedance, 

where the following equations must be satisfied on the surface of a non-perfectly 

conducting body 

ET-(n- ET)n  =   Z ^ • (n x HT) (4.3.5a) 
— — o — 

ETx n   =   Z   n • (HT- (n • flT) n) . (4.3.5b) 

The impedance dyadic is symmetric and will contain all terms except for the 

case of plane wave incidence onto a planar surface with invariance along one axis 

normal to the plane of incidence for which the diagonal terms are involved only. 

In all other cases a local angle of polarization as well as a local angle of de- 

polarization together with the radii of curvature will be involved.   These prop- 

erties however may not allow the formulation of the required independent equations 

since the impedance dyadic will become a function of the radiant dependence 

along the outward normal (Morse andFeshbach,  1953).   Before any further 

assumptions can be made, the scalar case will be investigated in detail. 

4.4   FORMULATION OF A SET OF INVERSE SCATTERING BOUNDARY CONDITIONS 
FOR A SCATTERING SURFACE,  SATISFYING THE SCALAR LEONTOVICH 
BOUNDARY CONDITION   (ET _ (g . ET) n ) = rj Z   n x HT . ,A _<T\   A 

o 
Applying scalar and vector product operations of equations (4. 3. 1) to 

(4.3.4) onto one another a complex set of interdependent scalar and vector 

equations results which are given in the appendix.   Inspecting these equations 

it was found practical to employ the following three pairs of vector expressions 
T T 

as fundamental vectors for further analysis (where   E = E   t and H = H    ) : 
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-Ill   =   -l + -2   =     [(ExEl + nrr»(HxH*)] (4.4. I) 

A*      =   -Aj (4.4.1a) 

A*      =   - An . (4.4.1b) 

Thus  A    and A      are purely imaginary veotor quantities 

?T TT    =   §i + ?o   =    R?(E*xH) + T7*(£xtt^l (4.4.2) 
1, JJ. 1 & L- — 

B* = - Bj (4.4.2a) 

B^ = Bn (4.4.2b) 

Cj n = C   + C2   =   [i)(ExH) + rj*(E*x H*j]                                   (4.4.3) 

C* - - Cj (4.4.3a) 

CJ = Cn .                                              (4.4.3b) 

In addition to these three pairs of fundamental vectors, it was found useful to 

introduce the following notations: 

D =   A   xB     =   D* (4.4.4) 

Ej =  A   xA      =   E* =   2AjXA2   =   2 T] T?*(E X E*) X (H X H*)    (4.4.6) 

En        =   ?TX?n   =   _^n=   2-l X-2 = 2rTT*<£*xl?<)x<lxIP!e)    (4.4.7) 
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-HI   =   -I*-II   =   ~-m   =   2-lX-2   =   2r)rj*(ExH)x(E*xH*) (4.4.8) 

£j  •   - J* =  AjX Bn (4.4.9) 

-n = ~-n = -ix-n • (4.4.10) 

Employing properties of the derived set of scalar and vector equations as 

given in the appendix, three orthogonal vectors out of the thirteen vectors 

defined must be found to which all the remaining vectors can be simply associated. 

Inspecting equations(4.6.6a, 9b, 13) of the appendix, two of the required vectors 

may be found in A    and B  , since 

(4.4.11a) 

(4.4.11b) 

(4.4.11c) 

(4.4. lid) 

Thus the purely imaginary (4.4.1a, 4.4.2a) vector quantities  A     and  B    are 

perpendicular to each other (4.4. lie,  4.4. lid) and in fact tangent to the local 

scattering surface (4.4.11a,  4.4. lib) .   Furthermore, it can be shown that 

AJ.AJ   =(B   xn) • A    = (Bjxn) • (Bjxn)   = 

=  B   • B    -  (n • Bj)2   =   Bj • Bj (4.4.12a) 

n   • 4,-o 

A 
n  • Bj-o 

Si 
A           A =  n x A 

A-I 
=  - nx B 

and 

A     '   B    =   0 . (4.4.12b) 

Since  A     and  B    are tangent to the local scattering surface and perpendicular 

to one another, its cross product  D    (4.4.4), a purely real vector quantity, must 
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be directed along the local outward normal  n of the scattering surface, where 

BT ' A    x Bj = -(Aj- Aj)n   --(B   . B)n   = [n-(AxB)]n    (4.4.13) 

and with equation (  .   .    ), where it was shown that: 

[n  -(AJXBJ)]    =  "ZCj • C2  = -2(AX • A2) + B1 -fig) (4.4.14a) 

Dj  =   -2nC1 • C2   =   -2n (Ax • A2 + Bx • B2) . (4.4.14b) 

Since no further triplet of orthogonal vectors was found and the remaining vector 

quantities as defined in (4 .4.1) to (4.4.10) can be uniquely decomposed along 

the directions of A   , B , and D   , the following theorem can be formulated: 

Theorem:   If the electromagnetic behavior in the vicinity of a scatterer satisfies 

the Leontovich Boundary condition 

ET-(n- ET)n  =  r,Z   nxHT 

— — o        — 

then the following two purely imaginary vectors 

Aj   =  (E     xE     ) -rjrflH    xH     ) 

and 

T* T T T# 
B     =   r)(E      xH)-n*(ExH      ) 

are orthogonal vector quantities which lie in the local tangent plane of the scatterer 

and its cross product, a purely real vector quantity, 

?!  • ^x^  =  n   [n •   (AjXBj)] 

is directed along the outward local normal of the scatterer.   The absolute values 

of these three vector quantities are identical, where 

Aj- Aj   -   Bj- Bj   =   -(n • Dj) 
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and A   j B   , D    constitute a right-handed orthogonal vector triplet. 

These peculiar properties result in the following characteristic equations 

from which a set of inverse scattering boundary conditions may possibly derived. 

Since with (4.4.13) 

two characteristic equations for the determination of the amplitude and the phase 

of the relative impedance  17  are found: 

(Ex E*) • (E x E*) + (n rf)2 (H x H*) . (H x H*)   =   - 2 rj n*(E*x H) • (E x H*) 

(4.4.15a) 
and 

r? (E*x H) • (E*x H) + rf? (E x H*) • (E x W) =   - 2rj rf(E x E*) • (H x If''). (4.4.15b) 

For the derivation of (4.4.15a)   and (4.4.15b), equation (4.4.12b) was not used, 

thus the orthogonality condition of A   and B    may be employed as the character- 

istic equation for the determination of the surface locus, i.e. 

A   * B    =  0 or (4.4.16a) 

[(E xE*)-n n*(H x H*)J •   [n (E*X H) - n*(E x H*)]  = 0 

which can be rewritten into 

[(E • E*) - t) rj*(H • H*)J [n • (E* • H) + r)*(E • H*)]      = 

=     n (E • H)  [(E* • E*) - n*2 (H* • H*)]   + n*(E* • H*)    [(E • E) - r? (H • H)]    . 

(4.4.16b) 

Although (4.4.16) has not been employed in the derivation of (4.4.15a, b), these 

three equations may be linearly dependent which still must be investigated. 

The fourth characteristic equation for the determination of the surface 

normal, then is given by 
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DT AT  x   BT ATx BT A ZJ -I       -I -I    -I ..   .  ,_. 
n = TTD^ 

= ^[Ajxy   = "  2crc2 
(4-4-17b) 

- {[(Ex E*) - n n*(H x H*)J x [n (E*X H) - n*(E x H*)] ] 

2 nn*(E x H) • (E*xH*) 

which is dependent upon rj  and so far could not be formulated solely in terms 

of the field quantities. 

Inspecting these characteristic equations it is found that a fourfold 

solution for the relative impedance  rj  results as was predicted, furthermore 

these r\  represent a set of four complementary solutions.   For the degenerate 

case  r\ -» 0 ,   equation (4.4.15a) degenerates into the inverse scattering boundary 

condition  E    x E       =0 which was derived by Weston in 7644- 1-F (chapter X). 

To determine the proper amplitude and phase of n , the 

formulation (4.3.1) of the Leontovich equation must be satisfied which would 

require a characteristic equation for the surface normal n being independent 

from r\, otherwise a unique solution may not be found   from the orthogonality 

condition (4.4.16a).   Namely were 17 a function of frequency then also n may 

become frequency dependent.   However it may be possible to express  D    in 

terms of cross procuts of A    ., B   „  or C.  „  such that the normal becomes 
1,6 1, 6 1,6 

a closed form expression in terms of the field quantities only. 

Although the characteristic equations (4.4.15,  16 and 17) cannot be applied 

in the general problem of inverse scattering for the determination of the constituent 

parameters  S (R, 8,0), n (R, Q, 0) and r\ (R, 6, 0)  due to the inherent vector nature, 

the presented derivation suggests that such a formulation of local inverse scattering 

boundary conditions may exist.   A more sophisticated analysis, employing the 

vector form of the Leontovich boundary condition, may yield the desired character- 

istic equations. 
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4.5  SUMMARY 

It was shown that it Is possible to derive a set of scalar and vector equations 

from the complementary set of the four formulations of the Leontovlch boundary 

condition which may be employed as local boundary conditions to the problem 

of continuous wave inverse scattering.   Although the derivations are based upon 

the formulation of a scalar Leontovlch impedance, this first approach reveals 

a rather important result.   Namely inspecting the characteristic equation (4.4.15a) 

it can be shown that the associated scattering surface locus can be found if solely 

the absolute value of the impedance is known.   Thus if the material character 

of the surface is known, the following local inverse scattering boundary conditions 

may be applied to determine the surface locus  S(R, 9, 0), i.e.   the shape of the 

scatterer: 

a)  r\ = 0 (perfectly conducting scatterer): 

(Ex xE     ) • (E    xE1  )   =  0 (4.5.1) 

/3)  rj = oo (perfect magnetic conductor or scatterer with plasma coating): 

T T* T T* 
(H   x H    ) • (H    x H    )   =   0 (4.5.2) 

y)  0 < rj < oo, \r\\t   1  (conducting scatterer for which only the absolute 
value of the relative Leontovich impedance has 
to be known): 

(ET x ET*) • <ET x ET*) + (rm*)2 (HT x HT1 - (HT x HT*)   = 

=  - 2rjn* (E     xH   ) • (E    xH    ) . (4.5.3) 

These boundary conditions are necessary but not sufficient.however they are local 

conditions which permit a point by point determination of the surface locus and 

its application of two or more different operational frequencies may result in 

the unique specification of the proper locus out of the infinite set of the obtained 

loci as was discussed in detail in section (4.2). 
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Furthermore the properties of the formulated theorem of section (4.4) 

suggest the formulation of a more general set of local inverse scattering boundary 

conditions for which the a priori knowledge of the relative Leontovich impedance 

is not required.   Such a formulation requires first of all the proof that the charac- 

teristic equations (4.4.15a), (4.4.15b) and (4.4.16a) are linearly independent. 

Then a formulation of the surface normal must be sought which is independent 

of r\  so that the impedance corresponding to the proper plane can be selected. 

So far no explicite physical interpretation on the nature of these boundary 

conditions was presented, preliminary investigations   however suggest that a 

relationship between the electromagnetic stress tensor (J. A. Stratton,  1941) 

and the properties of the above state theorem exists.   It is therefore proposed 

to investigate such existing relationships in all detail. 

4.6  APPENDIX 
T 

For convenience, the total magnetic field vector   H    -H  is normalized 
T 

with respect to the total electric field vector  E    - E  by the intrinsic impedance 

of free space   Z    =1207rn, where   Eqs. (4.3.1) to (4.3.4)   will assume the 

following form 

|[E-(n • E)n]    -rj(nxH)} = 0 I 

[ (E xh) - n   [H- (n • H) n]j = 0 II 

f[E*- (n • E*) n]  - rj* (n x H*)}  = 0 IE 

( (E*xn) - n*    [H*- (n • H*) n]i    = 0 .         IV 

The scalar and vector product operations of these equations onto another result 

into the following relationships: 

4. 6. 1   SCALAR PRODUCTS 

I-I    or    II • II 

(E • E) - n2(H • H)   =   (n • E)2 - r? (n • H)2 (4.6.1a) 
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rj [E • (n x H)] =  (E • E) - (n • E)2   =  r, [H • (E x n)] 

n2 (H • H) - r? (n • H)2 
(4.6.1b) 

or 

2rj[n-(HxE)]    =    [(E • E) + r? (H • H)]  - [(n • E)2 + r? (n • H)2]       (4.6.1c) 

P* • I*    or     II* • n* 

(E* • E*) - r]*2 (H* • H*)   =  (n . E*)2 - r}*2 (n • H*)2 (4.6.2a) 

H*  [n •   (H*xE*)]    •   n*   [E*-(£XH*)]   =   rj*  [H* • (E*x n)] = 

=  (E*« E*) - (n • E*)2   =   n*2<H*« H*) - r)*2 (n • H*)2 (4.6.2b) 

or 

2TT* [n•(H*X E*)] =  [(E* • E*) + n*2 (H* • H*)] - [<n • E*)2 + n*2 (n • H*)2] 

I . H   and   I* • H* 

t* „ \   i A r](E • H)   =   rj(n • E)(n • H) 

r)*(E*- H*)   =   n*(n • E*) (a • H*) 

(4.6.2c) 

(4.6.3a) 

(4.6.3b) 

I • P* 

(n x E) • (n x E*) - rjrj*(n x H) • (n x H*)   =   0 

or 

II • n* 

n-   |r)(E*xH)-n*(ExH*)J   =0 

(4.6.4a) 

(E • E*) - nn*(H • H*)   =   (n • E) (n • E*) - r)rf(n • H) (n . H*) (4.6.4b) 

(4.6.5) 
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I ; n* 

n« f(ExE*) -T7n*(Hxff^)]   =0 (4.6.6a) 

n(nxE*) • (nx H) + n*(nxE) • (nx H*)   =   0 (4.6.6b) 

or 

n (E* • H) + rj*(E • H*)   =   rj (n • E*) + r)*(n • E) (n • H*) (4.6.6c) 

4.6.2   VECTOR PRODUCTS 

I x I    and II x II 

(ExE)   =    n2(HxH)   =   0 (4.6.7a) 

I* x I*   and    II* x n* 

(E*xE*)   =   rj*2(H*xH*)   =   0 (4.6.7b) 

I x n   and    I* x IP 

n(ExH)   = j [rj n • <H x E)]   -   [(E • E) +   2 (H • H)| j  n +  [(n • E) E +   2 (n • H) H] 

=   [n
2 (H • H) - (n • E)2] n + [(n • E) E + r? (n • H) H] 

= [(E • E) - n2(n • H)2]n+ [(n • E) E +   2 (n ' H) H] (4.6.8a) 

rj*(E*x H*)   = | [rfn • (H*x E*)] -  [(E* • E*) + rff2 (H* • H*)] J n + 

+ [(n • E*) E*+ n::<2 (n • H*) H*l  = 

=  [rj*(H* • H*) - (n • E*)2 ] n + [(n . E*) E*+ n*(n • H*) H*]    - 

=  [(E* s E*) - n*2 (n • H*)2]n + [(n • E*) E*+ rf2 (n • H*) H*] 

(4.6.8b) 
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I x I*   and   II x II* 

n •   [(Ex E*) + nrfHU x H*)]  = [rr<(n x E) • (n x H*) -i)(nx E*) • (n x H)]  (4.6.9a) 

since 

n(nxE*) • (nxH)   =   - n • (E x E*)   =   -r]rf^.(HxH*) (4.6.9b) 

or 

7i*(nx E) '(n x H)   =   n • (E x E*)   =   ntfn • (H x H*) (4.6.9c) 

thus 

n •    [(Ex E*) - wMH x H*)]  = 0 (4.6.9d) 

and 

ri [i)(nx E*) • (n x H) + n*(nx E) • (n x H*)] = 0 (4.6.9e) 

I x n* 

n [(n x E) • (n x E*) - nr)*(n x H) • (n x H*)]  = 0 (4.6.10a) 

n ((n x E) • (n x E*) + r]f (SxH)'(nx H*)}    = 

=   n* n x [(Ex H*) x  n] +   rj (n x H) x (n x E*) - r?*(E x H*) (4.6.10b) 

nxp 

n  | (n x E) • (n x E*) + r?n*(n x H) * (n x H*)]    = 

=   n*(n x H*) x (n x E) - n (E*x H) + rj n x [(E*x H) x n ] (4.6.10c) 

(I x n») - (II x I*) 

[rj (E* x H) - rj* (E x H*)] =   r)*(& x H*) x (n x E) - r) (n x H) x (n x E*) 

+ r)ii x [(E* x H) x n] - rj* n x [(E x H*) x n J    = 

=   Qx[(ExE*)-t]n*(HxH^] . (4.6.11) 
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Equation (4.6.11) constitutes an important result namely that a set of orthogonal 

vectors is found which are tangent to the local scattering surface since by 

(4.6.5) and (4. 6. 6a) 

n •  [rj (E*x H) - n*(E x H*) ] = 0 

and 

n • [(Ex E*) - rjr?*(H x H*)]   = 0 

Verification of (4.6.11) 

[n (E*x H) - rr(E x H*)]  = [E*X (E x n) - E x (E*x n)] 

+ r)tf f(n • H) [(n x H*) x n] - (n • H*) [(n x H) x n] J   = 

= [(E* • n) E - n (E • E*) - (E • n) E*+ n (E • E*)] 

+  nrj* [(H • n) H* - (n . H) (n . H*) n - (n • H*) + (n . H*) (n . H) n]       = 

- [(E*x E) x n] + r)rf [(Hi H*) x n ]   - 

= n x [(E x E*) - r7T7*(H x H*)] 

There exists another formulation of (4.6.11) given by 

[(E x E*) - r]T7*(H x H*)]  =   -n x [rj (E*x H) - n*(E x H*)] (4. 6.12) 

which may be verified as follows: 

[(E x E*) - r/n*(H x H*)]  = fa* [E x (n x H*)] - r\ [H X (E*x n)] J 

+ [(n . E*) [E x n] - nr7*(n" • H*) [H X n]   }   - 

=   nj[r)*(E • H*) + r) (E* • H)]  - [rf(n • E)(n • H*) + rj (n - E*) (n • H)] j 
V *v '* 

-    0, according to (4.6.6c) 

+ j [n (n • E*) H - r\ (n . H) E*] + [rj*(n • H*) E - n*(E • n) H*l   '     = 

=  rj[nx(HxE*)] +t]!'[nx(ExH*)] 

= -nx   [r](E*xH)-r)*(ExH;')]      q.e.d. 

38 



This concludes the derivation of scalar and vector product operations which 

resulted into the following identities: 

j[(E x E*) - nn*(Hx H*)] + nx [r)(E*x H) - rf(E x H*)] f   =0 (4.6.13a) 

or 

[(E xE*) - rjrj*(Hx H*)l  xn + [rj(E*x H) - rf(E x H*)]j   -0     . (4.6.13b) 

4.6.3   DERIVATION OF ADDITIONAL VECTOR IDENTITIES 

It can be shown that    D    =  n (D   • n)  can be reformulated as: 

n • Dx   =  n • (A   xB  )   =   - 2  J[rjT7*(n • E) (n - E*) (H • H*) 

+ rjn*(n • H) (n • H*) (E • E*)] -  fnn*(n • H) (n • E*) (E • H*) 

+ rjrj*(n • H*) (E . n) (E* • H)] ' = 

=   - 2 r]H* [(E x H) • (E*x H*)       =   - 2 rjrj* [(E x E*) • (H x If") 

+ (E*x H) • (E x H*)J   =   - 2 r]rf'f [(E • E*) (H • H*) - nn*(E* • H) (E • H*)] 

(4.6.14) 
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MATRIX INVERSION FOR THE CASE OF END-ON 
INCIDENCE ONTO A ROTATIONALLY SYMMETRIC SCATTERER 

5.1   FORMULATION OF THE MATRIX 

In problems of C. W. inverse scattering it is assumed that for a given 

incident field the measured far scattered field can be obtained for a sufficiently 

large number of bistatic angles.   If the direction of the incident wave is chosen 

along and in direction of the negative   z - axis   of a spherical coordinate system 

and the polarization vector   e   of the transmitted wave is parallel and in direction 

of the positive  x - axis, then the scattered field may be represented by a series 

expansion into vector spherical wave functions: 

oo        n 

Z_J    p)*    agmnMgmn+(i)nbemnNemn J    (5.1.1) 
n=l    m=0 

ES(R ,6 J )   =  /   i 
— c     c    c rc        *— 

where the vector spherical wave functions are defined by: 

Memn(R,e,0)   =  +  <h(1)(kR)Sm(9)Sin (m 0) >   6 
— o In n       cos 

1h
(1)(kR)R>)C°S(m0) \  $ (5.1.2) 1  n n       sin      r 

N§m„m,M>   •  (^   tMkR) P>os 0) °£<m0)}   fi 

+ (d   £   [shUW] Em(cos9)cos(m0),l   6 kR   dR   L      n -In sin 

• \~    ±     Rh(1)(kR)      Sm(cos0)Sin(m0)>    0        (5.1.3) 1 kR   dR n n cos       r        r 

with 

Sm(0)   = -7— Pm(cos d)   = £ cos d  ["(n-m+1) (n+m) Pm ^cos 6)  + 
n sin 0     n 2 L n 

+   Pm+1(cos 0)       + m sin d Pm( cos 6) (5.1.4) 
n J n 
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m, ap (cos e) of   vcos a) r -i 
Rm(0)   =  T^    = i     (n-m+1) (n+m)   Pm_i(cos 9) - Pm W 9) I      .(5.1.5) 

n 302L n n J 

(5.1.5) 

For a perfectly conducting sphere the expansion coefficients  aemn,; 

bemn  bear the following relationship with the expansion coefficients given by 

Stratton (1941), where   m = 1   for nose-on incidence onto a rotationally symmet- 

ric body: 

. ,   ,.n+l  (2n+l) ,_ . 
a ,      =   l (-1) ZT\\      a (5.1.6a) 
oln (n+ l)n     n 

b 1      =   K-DV1^    b . (5.1.6b) 
eln (n+ 1) n      n 

Employing the asymptotic approximation of the Hankel functions 

lim 
X -» 00 

, (1)/  xl       /   .vn+l   exp ix ,,.,_. 
h     (x)> =   (-i) —*•— (5.1.7a) 

lim      {   **   L„    n ±\    -  (-i)n   ^^- (5.1.7b) 
X -» 00 

and extracting the factor   (—^ j from the measured field components, the 

far scattered field is given by 

N 

E^ (0 , 0 )   ^   /_    cos 0       fa ,    S (cos 6 ) + b ,    R (cos 0 ) (5.1.8a) 
0      c      c '—r1 c      L oln   n c        eln    n c   J 

c n=l 

N 

E! (9 , 0 )   =   -  /    i sin 0       fa ,    R (cos 0 ) + b ,    S   (cos 0)1 (5.1 
0     c     c '•   ; '        rc        oln    n c        eln   n c J rc n=l 

where   N  denotes the total number of receiver aspect angles, and for the   c 

receiver the field components are given by 

.8b) 

th 
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El Wc-'e>' E0 Wc''.»      • 

For the formulation of a suitable near field representation, the unknown 

expansion coefficients   a ,  , b        must be computed.   To do so, the field 
oln     eln . 

s        s 
components  E. , EA , and the inherent terms  S (0), R (0), cos 0    must 

o       0 n n c 
c      rc 

be arranged in a   matrix formulation so that the most suitable matrix repre- 

sentation results which satisfies stability criterions, encountered in the inver- 

sion of such a matrix. 

Inspecting Eqs. (5.1.8a, b) which represent the basis of further analysis, 

these equations may be rewritten into the formulation 

E   =  A X (5.1.9) 

T 
where the transpose  E     of E   is given by: 

ET 

JVVi'- V*'*'' V's-'s'* 

••• v v v; y Vi> vv *2> 

E,<   (0   ,  0 
0XT   N'  FN 

N 
(5.1.10a) 

,T 
which consists of  2N  complex elements, and so does the transpose   X     of 

X which represents the unknown coefficients: 

X     = (a ,., b 11# a 10, b . . . a , , b ,   )    . (5.1.10b) oil     ell     ol2     el2 oln     eln 

With this arrangement the matrix elements of A   are defined as well, where 

the   r      row for   1 <  r <  N   is given by 

S. (cos 0 ) cos 0 , R. (cos 0 ) cos 0 ,  S_ (cos 0 ) cos 0 , R„ (cos 0 ) cos 0   , 
LI r rr      1 r rr     2 r rv      2 r *r 

...       S    (cos 0 ) cos 0    , R    (cos 0 ) cos 0 (5.1.11a) 
N r rr       N r rrJ 
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and the (N + r)    row for 1 < r < N is given by 

- R^cos 0 ) sin 0    - S„(cos 0  ) sin 0 , - RJcos 0  ) sin 0   , 
LI r rx       1 r rr 2 r rr 

(5.1.11b) 

- So (cos 0 ) sin 0 ,  .... - RXT(cos 0 ) sin 0   , - S (cos 0 ) sin 0 
2 r rr N r rr N r rrJ 

The resulting matrix A   can however be decomposed into the product of two 

square matrices: 

A (0 , 0 , n)   =   B(0 ) C(0 , n)      . (5.1.12) 
c     c rc        c 

The properties of this matrix must be investigated in detail to gain more informa- 

tion about stability criterions. 

5.2   PROPERTIES OF MATRIX  A (0 ,  0 ,  n)   =   B(0 ) C(0 , n) 
c     c c c 

Matrix  A   is a square matrix with  2N x 2N  purely real elements for 

real angles   0 , and  0    .   Matrix   B(0 )   is diagonal, solely incorporating the 
C C C 

0 - dependence and its elements are given by: 

b       =   cos 0 for 1 <  r < N (5.2.1a) 
rr rc -     - 

bT      XT1      =   -sin0      forN<N+r<2N     . (5.2.1b) 
w+-r, N+r c _ 

The determinant of  B  is always smaller than unity, where 

(_i)N N 

Det {B} =   L-^~ J[      sin20 . (5.2.2) 

This matrix will become singular for 

0     =   0 + m   n/2    ,      m = 0, 1,2   .  .  . (5.2.3a) 
c 

and is maximum for 

0     =   TT/4+ m w/2 (5.2.3b) 
c 
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and it can be seen that otherwise no restrictions are imposed, e.g. the choice 

of 0   = 0   = 0   = . . . = 0     is permissible.   However, it may be advisable 
C J. _ IN 

to extract the   0 - dependence entirely from the field components before in- 

verting the matrix,  since the 0 - dependence solely reduces the magnitude 

of determinant  Det VAJ   . 

Matrix  C (0 ) , solely incorporating the 9 - dependence in terms of 

Legendre functions, needs further thorough investigation.   Inspecting Eqs. 

(5.1. 8a, b) it is recognized that always two of the 2N x 2N  elements are identi- 

cal, and for even N  matrix  C  can be decomposed into the sum of two matrices 

each containing non-identical coefficients, where for   N = 2  we find: 

C   = 

Cll C12 C13 C14 
Cll  °  C13  ° 

C21 C22 C23 C24 

C31 °32 C33 C34 
= Cl+C2 = 

°  C22  °  C24 
C31  °  °33  ° 

C41 C42 C43 C44 °  C42  °  C44 

° C12 ° C14 
C21 ° °23     ° 

° C32 ° C34 
C41 ° C43     ° 

(5.2.4) 

where 

C11=C32 = S 

C21 = C42 = S 

C12 = C31=R 

C22 = C41 = R 

(9   )  = 1 
r 

<*2>-i 

(e ) = cos e 

(92) =cose2 

C13=C34 = S2(01)=3COS01 

C23=C44 = S2(92) = 3COS02 

C14 = C33=R2(91)=3C0S291 

C24 = C43 - R2(92)  = 3 C°S 2 92 

(5.2.5) 

Furthermore,  it can be shown that 
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DetjC   \   =  Det [c   J (5.2.6a) 

since 

C2   =   TClR (5.2.6b) 

where 

0 1 0 o" 
1 0 0 0 
0 0 0 1 
0 0 1 0_ 

R 

0 0 1 (T 
0 0 0 l 
1 0 0 0 
0 1 0 0_ 

(5.2.6c) 

This property may be employed to derive the determinant of  C   more easily, 

where 

C'Cj + 02   =   CjU+C^Cg)   =  (ClC2
l + l)   C2 (5.2.7a) 

where 

Det {C j =   Det {C   j Det h + C~    C    ] (5.2.7b) 

For the chosen case   N = 2, the determinants result into: 

M0! j = - (C12 C13 " Cll C14) (C22 C23 " C21 C24} 

- - (3 sinV ) (3 sin20   ) 
J. Z 

Detjl+cf   C   J=   ]2 (cos 6   - cos d ) J 

(5.2.8a) 

(5.2. 8b) 

thus 

Det H ,-0 N=2 
3 sin B, 1 J    L J[» 3 sin 9 J 12 (cos 0  - cos 0 ) |      .(5.2.8c) >J 
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Employing this scheme, the determinants for the cases  N = 4  and  N = 6 were 

evaluated.   There it was found convenient to formulate the determinants into a 

continued fraction expansion for increasing  N,   where 

Det HN = 

=   C   sin   0 

1 
 2~f T2 
C   sin   0   cos 0-cos 0, •J 

cos 0   - cos 0      cos 0„ - cos 0 CgSin  0   cos 0-cos 

C M sin  0 
4 4L        4 

cos 0   -cos 0       cos 0   -cos 0       COS0   -COS0    ' 

C^ sin 0 
5 5L   5 

cos 0^ - cos 0 [ cos 0 - cos 0 r cos 0 - cos 0  cos 0 - cos 0 

jjcoi C„sin   0lcos0_-cos0_ 
6 6L        6 5. 

cos0„ -cos 0A 

etc. 

2   r 12 
CXT sin   0XT cos0XT - cos 0XT 

N Nl N N J: cos 0   -COS0    ' 

N 

r 
(5.2.9a) 
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The constant multipliers were found to be 

c  =i=(-D1 + 1 i -i2 
1
 1 

C2 = -2232 = (-l)2+1^22 

c   =3i^=(„1)3+li!_3i_5i.32 
3 2 1      22 

C    =-22.52.72 = (-l)4+1-^-^—^'42 C4      2     5      7      (1, ^   ^   g2 

n        34-54-72      ,1|5+1      l2-32-52-72-92       2 
C

5 
=  6   =(_1) '        2      2      7 2~'5 

D 2 1   • 2   ' 3   • 4 

622 222222 
-3   • 7   - 11 .    ,6+1   1   • 3   • 5   • 7   • 9   • 11 2 

6" 24 ,2   223242.52 

I (2 c - 1)' '   ' 
C_  =(-D — =^—   c (5.2.9b) 

I2 

[(c-i):] 

(2c-1)'.'. = 1- 3- 5- 7- 9 (2c-1) 

where computational results are given in Table V-l. Inspecting (5. 2. 9) it can 

be seen that Detjc (B^ 2N x 2N)j can be decomposed into the product of twc 

N x N   determinants: 

C(0cJ  2Nx2N) = D(sin   9^ NxN) • E2(cos 6 ,  NxN) (5.2.10a) 

D  is a diagonal matrix with diagonal element of the form 

[(2c -l)'.'.]2 
A /  ^\c+1     L(2c-l)'.'.J        2   .  2n d
cc

=(_1) r '    -.2 c   sin   6n (5.2.10b) [(c-l)'.f c 

47 



and  E   is of the Vandermonde type, where Vandermonde's determinant is 

here given by: 

V=E = 

lcos0 cos ft- 

lcos0 cos 8 
—• Ci 

lcos0 cos 6 

N-l 
• -cos0 

N-l 
COS0, 

i 

N-l 
cos 9, 

lcos 9 
N 

N-l 
COS0 

(cos 0-cos ft )(cos ft-cos ft )• • • (cos ft-cos ft ) 
2 1 o 1 N 1 

(cos 0 -cos 0 )(cosft-cos0 )• "(cose XT-cos 0 )| 

N 
(cos 0    - cos e T   . ) 

N N-l 

N N e +e e -e 
(cos9   -cos 6 ) = 

N>r>s>l r N>r>s>l 
2 sin (-V^) sin (-^) .(5.2.10c) 

Thus instead of the continuous fraction expansion a closed-form solution for 

Det jC (9 , N)|   can   be given, where 

Det (c<e,N)}= fl(-i)c+1 c(2c-l)'.'. 
(c-1)! 

sin0 
N 

TT 
'J N>r>s>l 

(COS0   -COS0   ) 
r s 

N N 
• TT(-Dc+1[esineJ2     TT 

c=l N>r>s>lL 

"2(28+1)    .  ,VV   (  ,V\T 

N 
(5.2.11) 

Inspecting (5. 2.11) it is found that for a set of  N   aspect angles   R =   2    c roots 
2 

will be encountered, where   N  of these roots are the   sin 9   terms and the 
c 

remainder is the product of the squares of the differences of the argument cos 9 

of the Legendre functions, for all mutations of the   N  polar angles   9 .   Thus the 

following restrictions must be imposed onto the   9 -dependence: 
c 
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i)  6   + 0  or  7T 
C 

ii)   9   i= 6       ,   c = 2,3,    N 
O C/ • i. 

iii)  The distribution of the polar angles   6    must be chosen so that the 
c 

determinant neither becomes too much nor too large but of the order of unity 

where for each different number  N  an individual optimization procedure must 

be employed. 

5.3   SUMMARY 

The obtained results may be summarized in the following theorem: 

Theorem: V-l 

If an expansion of the scattered field into spherical vector wave functions 

is employed for the first dipole case (m = 1), i.e., end-on incidence onto a 

rotationally symmetric and perfectly conducting scatterer, then the determinant 

Det |A (0 , 0 ; N)j   =   Det < B (0 ) j • Det jc (0 , N) J 

XT N 

, ,.U
N n <-D0+1 

c = l 

sin20 
c • (2c-1)". 

2    JL(c-l)! sine 
H9 N 

(cos0 -cos 6 ) 
N>r>s>l r S 

of the associated scattering matrix   A(0 , 0 ; N)  will become singular for 

i)   0C=P2    • p=0 t 1, t 2,   t 3 

ii)0=q7r, q=0,l 
c 

iii)   6=6^.     ,      c = 1, 2,  ... (N - 1) 
c      c+1 
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In addition, pseudo-singular behavior may be encountered even though 

(i), (ii) and (iii) are not satisfied if the computational aspect angles exclusively 

lie within narrow cones about the z-axis of the computational coordinate system, 

thus reducing the value of the determinant to almost zero. 

These properties are illustrated in Figs. 5-1 and 5-2 for transmitter- 

receiver configurations which may occur in practice most frequently. 

For both cases the receiver aspect angles are assumed to be well 

distributed within a narrow cone whose invariant axis  a is oriented perpen- 

dicular to back scatter direction.   For simplicity it is assumed that 0   = 7r/4 

or  0   = 7r/4 + it,   and main attention will be attributed to the dependence of the 

polar angle  6 . 

The determinant associated with the configuration of Fig. 5-1 will 

become pseudo-singular, whereas  the second configuration constitutes the op- 

timum choice as regards the orientation of the conical section relative to the 
2 

computational z-axis.   This properly is demonstrated   by the  added   sin 9 and 
2 

cos 9 - curves in which the respective f2   = sin 9    and  A       = (cos 9 -cos 9 ) 
c c id r /u r 

are plotted. 

In general, the optimum distribution of the aspect angles (0,0) depends 

upon the given number  N  of receiver locations, and must be determined for 

each individual   N   separately.    Yet from the general structure of determinant 

C(0 , N)  it may be concluded that such an optimum distribution will be obtained 

if the aspect angles are placed in the now identical maxima of the Legendre func- 

tions   P    (cos0)  for respective   N. 

5.4   COMPUTATIONAL RESULTS 

With the evaluation of the first four determinants as described in 

section 3.2, the properties of matrix   C (9 , N) were established, where 

Det[c(ec,N))   =  QN- PN(0c) (5.4. la) 

N 
Q      =    TT    C (5.4.1b) 
^N ' '       c 

c = 1 
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A A 
z = a 

Unit Sphere 

0    = 225 
c 

A      = (cos 0   -cos 8  ) 

FIG.5-l:"PSEUDO-SINGULAR" DISTRIBUTION OF ASPECT ANGLES 

(Invariant axis   a  of conical section (6 ) identical with the computational 
z - axis) 
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Unit Sphere 

k. 
-i 

A =   (cos0     - COS©    ) 
MY M y 

2 
Q     =   sin   6 

cos© 

FIG.5-2:STABLE DISTRIBUTION OF ASPECT ANGLES. 

(Invariant axis   a  of conical section (6 ) oriented perpendicularlly to the 
backscatter direction). 
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N N 
PXT(0 )=  TT sin 6 (cos0  -cos0 ) (5.4.1c) 

N   C      c=l C  N>r>s>l 

where  C    denotes the  c      constant multiplier of Eq. (5.2.9a).   The derivation 

of a general algorithm   for the constant multipliers  C    required additional 

computation of the next higher order determinants  Det  C (9 , N)   together with 

the corresponding  PM(# )•   In table V-l numerical results are presented, where 

Det  C(0 , N)   was computed directly from the matrix formulation as derived 

from (5. 1. 8a) and (5.1. 8b).    Apart from negligible round-off errors the computa- 

tional results verify the assumed expression of  C     to its best, where 

C    .[<»-'>'02      c2 (5.4.2.) 
°      [<c-l>!]2 

W
    c = l c = l      [(c-l)'.] 

For the spherical test case of electric measure  ka = 2  (8579-3-Q) the 

matrix inversion was tested for a varying number of  N   of aspect angles and 

for different choices of the sets of aspect angles   (8 , 0 , C = 1, 2,  . . ., N).   In 

the following tables V-2 and V-3, test results for   N = 4 and N = 6   are presented 

to verify properties of stability as they can be predicted from the determinant 

given by (5. 2. 9).   To do so the far field components for the chosen sets of aspect 

angles are computed from known expansion coefficients as given by Table III- of 

8579-3-Q with (5.1. 6), where the coefficient  (—^-=— )  is extracted. 

Employing the matrix inversion technique, as described above, the expan- 

sion coefficients are computed.   For a computational check the far-field compo- 

nents were recomputed with these coefficients.   It was observed that the minimum 

deviation occurs for those chosen sets of aspect angles (0,0   = 45 , C = 1, 2,... ,N) 

for which the magnitude of the determinant is of the order of unity. 
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TABLE V-2-la 
 ff— 

COMPUTATIONAL RESULTS FOR   N 

FT7V Pill  

4. 

T—' !      (J. 785400!)' 
1 7 1.047199 
T 3 1 .3089 99 
1 A        T.570BOO 

0.7B5400O" 
0.7B54000 

"07 7854000 
0.7B54000 

NR = Using parametric number of 
 aspect angle _J  

OF 0   NR   =      4   NT   =      1 Computation of Matrix Elements 

1   R   =      1    THETA(T,R)   =     0.7854000 
l—o ,~nrrn)s 5 0T7U7 I o B I— OVTT 

PHI (T,R) 0.7854000 

2      0.24O9967 1.499099 1.'•500005 
 3 -o. i rerroi— 

4   -0.4067512 
-r-a—r~Tr =-—? Tttrn 

1      0.499qqR5 
     2   -0VT2"50073~ 

1 .590981  
0.6249819 

TTRT-Jr   —1.0471 
0. 866076^ 
n799035  

0."*?47495 

b. *UM0R  
9.374^77 

_PHI (T.RI 
0.0 
~7.7500"OA  

5.674991 

"» 077857+000' 

3   -0.4^7^00^ 

i      I   R   =      3   THFTA( 
T 

-I. 3531 fi 4.718695  
T»R)   = 1.30R999 PHI(TtR) 
~0r.t)65976"5~ 

=      0.7854000 
11775*8170 " 

7   -0.3995207 
3 -0.344W73— 
4 0.1434330 

E 1   R   f 4    1HHAI 
1   -0.35007*7E-05 

T"""=Trr5 oonoo o " 
3     0.5251 140E-05 

"4     07^75TT0TJ0—  

0.7499944 
-0.9636111" 
-1.581923 

~0T0  
2.799041 

—3.627195" 
-3.716404 

T,R1    = 1 .5/080U 
1.000000 0 

-0.1050729E-04 

-PFrrTTTRT U. 7B540U0 

-1.500000 
0.2675570E-04 

 37000000  
-0.5251140E-04 
-7.500000 

A   MATRIX 
(A is defined by equation (5.1.12)) 

T      0".TO77T)5T~ 
1.5^0974 

7     0.70710 55- 
0.265156^ 

T—o. rurnppj 
-0.70541 05 

T» 0.7071055" 
-1.060^5R 

5 -C*."49oqqqp|- 
2.IS75021 

6 -0.3535579 
3.R44R97 

7 -0 71"83TJT"r 
7.743B55 

7).24754T7TJ"-^ 

"TJ74*> 99 979" 
-7.625011 

7T77535517 
-^.R44RR4 

~I"74990 92"" 
0.6249781 
""1.050654' 
-1.104856 

T)7876"657 
-6.187173 
^ 1.0 6 0664- 
-3.5354R7 

0. 1R30109 
-7.74^846 

^0.74754080"-^ 
0.4084470D-04 

"~=07"7071078—— 
-i.^^ogRO 

•-0. 70/1080  
-0.7651573 

~07"707TO 81  
0.7054130 

"=1X770710 BT  

0.5^qo37 / 
-1.15R044 

^TJ.74 26 275TJ=05~ 
0.18565540-04 

"07 87 (5 6 5 60TJ=0"5~ 
6.187195 
1.060^68 
3.535501 

~~1T8"3717$ 
-2.378176 

2.121324 
-5.303310 

-1 .83711 7 
2.32R167 

"=77T713I?T 
5.303291 

~-"l .4qgqqR" 
-0.6249803 

8 
-0.40844340-04 1.060661 

-1.060658  
1.104860 

^0 75490347  
1.158048 

"~0.74762520-05" 
-0.1856561D-04 

Al   MATRIX B(0„) CAO )   as defined by (5.2.1) and (5.2.4) 
—L  c _—_ . —  

0.7071053 
17590974"" 

"070" 

0.0 
o.o 

1.49999? 
"07"6749781" 

-0.24754080-05 
"07^X784 4 2 0T1-04 

0.0 
"TJ70" 

0.0 
"0.0 

2 0.0 0.3535517 0.0 -1.060664    . 

3 
' 0.0 

0.7071055 
•     -3.R44RR4 

0.0 
0.0 
0.5-V 90377 

-^.Mb487 
0.0 

-0.7054105 0.0 -1.15R044 0.0 
-2.121316 

5 . 303291" 
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T4£JLEJ¥=2-lb;_ COMPUTATIONAL RESULTS FOR N=4. 

5  -0.4999998 0.0 0.87665600-05     0.0 
 77575TT7T~ 
6 0.0 . 
 OTTT "~~ 
7 -0.1830115 
 ?;T4 3RS5 
8 0.0 

OTTT 
-0.7071080 

"=TT775ST37T 
0.0 
u.tr " 

-0.70M0B1 

6.18719b 
0.0 

~OY0 
1.837124 

""-T.328176 
0.0 

"TJ77J  
-1.060658 

_  1 .104860" 
0.0_  

~0.'0— 

0.74262520-05 
u.o 1.060661 "OTO" -U.1B56!>610-04 

A2   MATRIX" 
=   B(0 )C „(0 )    (see 5.2.6) 

2   c 
1 0.0 

0.0 
0.4999979 

.-2.625011 
0.0 
0.0 

-0.87665280-05 
-6.187173 

I 0.7071.05*1 
0.2651563 

'0.0 
0.0 

1.060654 
-1.104356 

0.0 
0.0 

a "0.0   '"• 
o.o 

0.1830109 
-7.743846 

0.0 
0.0 

-1 . 83711 7 
2.328167 

A C.7071055   ' 
-1.060658 

0.0 
0.0 

-0.74262250-05 
0.18565540-04 

0.0 
0.0 

5 
0.0 

-0.7U7107H 
-1.590980 

0.0 
0.0 

-1 .499998 
-0.6249803 

6 -0.3535529 
3.844897 

"0.0 
0.0 

1 .0606*8 
3.535501 

0.0 
0.0 

'7 0.0 -0.7071081 
0.7054130 

0.0 
0.0 

-0.5490347 " 
1.158048 

8 0.74 7541 70-US 
-0.40844340-04 

0.0 
0.0 

:         2.121324 
-5.303310 

0.0 
0.0 

DETA 8.199224 = Det (B ] • Det [c }         (defined by 5.1. 12) 

A   INVERSE 

1 -24.18691 43.94923 -37.83723 10.47621 

2 
"-74.95881 

74.95891 
" 44.14295 
-44.14315 

-•??. 59357 
37.59373 

9.782425 
-9.782481 

3 
'""    74.1.8681 

P.626*71 
. -43.94904 

-15.34219 
32.83707 
11.5?0?7 

-10.47616 
-3.555206 

4 
7. 916068 

-7.916098 
-13. 74816 

13.74827 
9.759778 

-9.759324 
-2.517213 

2.517228 

'..„, 5 
-8.6Z6534 
-7.468427 

T5Y342T2 
4.499455 

-11.52021 
-3.373734 

3.555185 
1 .006895 

" -7.46 34 7* 4.137175 " ~-7.5S7613 0.51 51431 
6        7.4*3485 -4.137193   • 2.557626 -0.5151468 

7.468416 
7     0.615467 8 

" -4.499433   :'" 
-1.078557 

"3.4 7321/     "' 
0.7737976 

-1 .UU68H9 
-0.2707796 " 

0.4351979"' 
8   -0.4351990 

-0.5392716 
0.5392 729 

0.2002681 
-0.2002686 

0.16752550-05 
-0.16008140-05 

-0.6154646 1.078551 -0.7737928' 

(    1 

0.2207780 

0ETA1   =        8.557744 =   Det [B }»   Det H 
A1    INVEPSE 

1        8.147164 
-4.114108 

0.0 
0.0 

-10.54TH7 
-3.499777 

0.0 
0.0 

2     0.0 
0.0 

0.7547295 
-3.016924 

0.0 
0.0 

l.I313bl. 
1.979821 

3     -7.372744 
4.042033 

0.0 
0.0 

11.07329 
3.254776 

0.0 
0.0 

4     0.0 -1.077481 0.0 -1.279510 
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TABLE V-2-lc:   COMPUTATIONAL RESULTS FOR   N = 4. 

0.0 ?.693675 0.0 -3.232408 
b 4 .'440036 

- 2.29 83 07 
o.o 
0.0 

-6.50U647J 
-1.687486 

0.0 
0.0 

6 " 0.0             " ""• 0.502H2U1   ' U.O 0. /b4Z3B0   ' 
0.0 

"7—-T7275: 
0.8047444 

"F      0.0 ' 

-7.011284 
~OTO" — 

0.0 
-0.430995 8 

1.077484 

0.0 
~~TT905T96"" 
0.4309940 

"OTTJ  
0.0 

2.262690 
over " 
0.0 

-1.292979 0*0 

DETA2   =        8.3577.28   =   Det  B   • Det  C, 

A2   INVF.PSE 

1 0.0 
 o.o • 
2 4.114134 
 =F."PFTC5T" 

3 0.0 
om 

4 -A.04?058 
 773771 

5 0.0 

3.016933 
~0.7542273" 

0.0 
—070  

-7.693683 
 rTOTTTTS 

0.0 
~oVn ' 

7.011790 
•-0.50281 79 

0.0 

0.0 
•~o.o  

3.499800 
~   10.54786"" 

0.0 
_o.o  

-3.754797 
"-11.07328" 

0.0 
—070 '""  

1.687497 
 6.500636 

0.0 
~ovo  
-0.4309969 
" -1.905594"" 

-1.979826 
~-1.1313 47" 
0.0 

7) . 0 " 
3.232417 
1.2H505 

0.0 
D.U " 
-2.262696 

-D.7542349" 
0.0 
0.0 

1.292983 
"0.3Z32456- 
0.0 
0.0 

 oyo" • 
6 7.79K321 
 -4.440031 
7 CO 
 0.0  
8 -0.8042488 

T.T25T59- 

DE!   =—0.9Sm05H 

TT70  
-1.0774 87 

7T."43W94"0" 
0.0 

"070  

-Det^C^cJ- 
TTTNVERS^ 

1     =74718691" 
-74.95881 

"7 24.05H9L 
24.1R681 

"3        e77&7«573_ 

7.91606* 
-$ =7^160 98" 

-8.626534 

-^V.Q4<?23~ 
44..14795 

-44.14315 
-43.P4904 

"=15.34219" 
-13.74816 

—13.74 82?" 
15.34212 

""=3?". 8 37,?T" 
-37.59357 

377^173 
37.83707 
IT. 52077" 
9.759778 

~"9". 759874"" 
-11.52021 
=3T373T?37? 
-2.557613 

~""~ 27557676" 
3.373217 

~0.773797 6" 
0.2002681 

-0.2002686 
-0.7737928 

-"10.47621" 
9.782475 

-9. f824Hl 
-10.47616 

"-3.555206 
-2.517213 

"-"7/.517278 
3.555185 

75 -2. 46H-'*77 
-2.463475 

"6       "274ir347J5~ 
2.468416 

"7     076134578" 
0.4351979 

H  -0.4J5J. 990 
-0.6154646 

/V.491J455 
4.137175 

'   -4.137I"93" 
-4.499433 

-"=7.078557" 
-0.539271 6 

U.b392 l?M 
1.078551 

 1.006BS5  
0.5151431 

"=0.515146 8 
-1.006889 

"=0"."2707796" 
0.16752550-05 
-U.160U814U-05 

0.2207780 

T FR 
 (Real Part)- 

1       0.47B2311 

PI 
{imaginary Part}- 

-0.360^460 
~2 F   0./H77469 
3       1 1.075998 
^ r       1.772^95" 
5 1   -0.2931354 

"6 1   -0.4B749T4" 

-9. 7d4 09*10 
-0.1207969 

~07T5 38157" 
0.5000026 
0.3285223, 
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TABLE V-2-ld:   COMPUTATIONAL RESULTS FOR   N = 4 

7             1   -O.f.o"'71*'> 
H 7    -O.B6 7QVf'l 

0.10^»-?99 
-0.1*0^977 

lit- 

r 
2 
•y 
4 

"5" 
6 
T 

R 

yD   _ 

(Real Part) 
"~0.7??769{T 

O.670PO7R 

YI 
(Imaginary Part) 

~~0.90~>9&16 

=TT77TWTKTn '   0 . !>fc 7('.ft 24k-01 
-0.3776765 -0.?3rn39? 

"O.?3B?~?(SF-0r "-0.974*5671=-01~~ 
0.M~431?E-01      0.300?RS7F-02 

"=T).l*?06RrE:*"aZ~0;«A9?3?0Fi"05~ 
-0.1 969776F-02   -0.R617624F-05 

o1n 

M 
y 

elTT 

1 
2 
3 

5 
~6~ 
7 

T 

FRC 
4Real Part) - 

0.47R?311 
"71.TR?? A 6^" 

1 .075997 
 1. 77799* 
-0.29313~3 

-0.69-7160 
~^0TR6T93W 

FIC 
-(Imaginary Part) 
-0.360^460 

~="0.20/t"0950" 
-0.1?07_6P 
=UTT5T»rr5~r 

0.5000074 

0.103"298 
S9F97T 
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TABLE V-2-2:   COMPUTATIONAL RESULTS FOR   N = 4. 

THFTA PHI 

1   ' 
1 

1 
2 

1.0471os 
2,00439'* 

0.78^*979 
0.78^3979     • 

1 
1 

7 

4 
1.30899* 
1.570794 

0.78**979 
0.78**979 

DFTA « 410 .75*7 =   Det B • Det C (see 5. 1.12) 

OFTA1   * 1. 075514 = Det B-Det C (see 5-. 2.1 and 5.2.4) 

DETA2   = 1. 07«^7fc =   Det B«Det C (see 5. 2.1 and 5. 2.6) 

0MET_=        381.9136 = Det (l + C~* • C   j   (see 5. 2. 

R T F*       FJ  
(KealParF)        7     (Imaginary Fart) 

7b) 

1 1       O^R??'*-^ -0.2040975 
?. 1        1.071161 -0.594,8'>R 
3 I -1.075997 -0.1207976    f     -0 
A 1 1.272995 -0.15?°140 
5 1   -0.4874874 0.3?85?4Q 

•M" 

6 1    -0.9387797 -0.7960107 
_7 1  --0.6937119. 0,10*r-333 

8 1    -0.867920? -0.169S909 

Xj* XT 
(Real Part) (Imaginary Part) 

1 1 0.7??746R -0.°09Q419 
? 1 0.6708*06 0.4146110 

"3 1 -0.209Q591 I       0. 56766'?F-01  [     oil 
j4 1 -0.3726835 -0.2303393 
5 1 O.?38230',F-01 -0.97^S664P-0* 
6 1 0.417^504E-01  0.3007902F-0? 
7 1 -0.142016SF-02  0.4491291E-05 
8 1 -0.1070025F-02 -0.8636775F-05 

eln 

EO C r I r. 
(Real Part) (Imaginary Part) 
0.7R??43S -0.7040075 

2 1 1.071160 -0.594^8^8 
3 1 T.0759O6 -0.1207976    >     ^Q 
4              1         1.272994              -0.1533140 

J5 1    -0.487^873 0.3?B5?39 
6 1   -0.9387795 -0.7960106 
7 1-0.6937118 0.1035333 

1   -0.8679290 -0.1695908 P" 
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TABLE V-2-3:   COMPUTATIONAL RESULTS FOR N = 4. 

THFTA PHI 

I 1 1.1780°7 
1 ?        1.3089°5 

3 !..439896 
4 1.570794 

DFTA    =      0. 117??ft5F-0V 

0.7853979 
0.785*n?9 
0.785^979 
0.78^979 

=   Det B • Det C 

0FTA1   =      0.1375974 

OETA?   =     0.137*5988 

(see 5.1.12) 

DetB-DetC (see 5. 2.1 and 5. 2.4) 

=   DetB-DetC (see 5.'2.1 and 5. 2. 6) 

OFT   =      0.8519518F-01 Det[l+C"1 • C2i   (see 5.2.7b) 

T F<* 
(HeaTT^affr 

1     0.°354352 

FT , 
"TTmaginary Part) 
-0. 15009r*Q 

2 
3 

"A" 
5 

1.0759 9 7 
J .3 97410 

1 1.7729Q5 
1   -0.591S6'>0 

6 1   -0.69^71 IP 
7 1    -0.7879701 

1   -0.867Q2Q? 

-0.1207976 
-0.1210306 
-0.153*140 

0.7275537 
0.1 0*5333 

-0.?76r^677F-01 
-0.16Q5909 •M- 

1 
2 

5 
_6_ 
7 
B 

(Real Part) 
0.7^«?7408 
0.6708390 

XI 
(Imaginary Part) 

-0. QC°'J416 
0.4 166 115 

3 1   -0.7099559 
4 1    -0.3726856 

0.5676665>=-0l 
-0.7303391 

1 0.?38???6F-01 -0.97<o67ir-03 
1 0.4174596F-Q1 0.300?943F-02 
1 -0.14198'OF-02 0.4560921F-05 
1 -0.1P70187F-02 -0.85°O585E-05 

oln" 

eln" 

7 
3 

FRC 
.(Real Part) 

V   0.935435! 
1. D7S9Q6 
1.197410 

4 1   1.272994 
5 1 -0.5915629 
6 1 -0.6937119 
7 I -0.7879701 

ir. 
(Imaginary Part) 
-0.1^0^959 
•0.1707976 
•0.121 0306 
•0.153*140 
0.2275536 

-IA. 

0.1035333 
•0.2765677F-01 

I   -0.8679291 -0.1695908 
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TABLE V-2-4:   COMPUTATIONAL RESULTS FOR N = 4. 

T R THFTA PHI 

1 
1 

'       1 
2 

0.5735986  . 
0.7R53979 

0.7853979 
0.7853979 

i 
l 

3 
4 

1.047195 
1.308995 

0.7853979 
0.7853979 

OETA   = 0.3053473 

PFTA1 =     0.6143691 

DFTA2 =     0.6143543 

OET   = 0.4970094 

R T FR Fl 

1 1 0.2?73?'*4 -0.531 «-7on 
? 1       0.478?7°8 -0.360^487 
3      .       1      0.7822435 -0.70'.no7r5 
4 1 1.07*907 -0.1707976 
5 . 1   -0.13c'olP1 0.61P505R 
6 
7 

1 
1 

-0.2931336 
-0.4874874 

0.5000073 
0.3785740 

8 1 -0*69^7119 0.1035333 

R T XP. XI 

1 
2 

1 
1 

0.7^77479 
0.6708788 

-0.9099605 
0.4l^?o? 

3 
4 

1. 
.     1 

-0.2 0°95 9! 
-0.3776875 

0.567 H89R-01 
-0.730^4'»6 

5 1      0.7382298F-01   -0.97596*9^-03 
6 1       0.4174458E-01      0.3004]. 37E-02 
7 
8 

1 
1 

-0.1&70120F-02 
-0.19698*r>F-02 

0.4689246F-05 
-0.87P^497F-05 

R T FRC FIC 

1    .0.?77?245 -0.5^16700 
2 
3 

1 
\ 

0.47R729A 
0.7R72435 

-0.360*4 3? 
-0. ?0<i0975 

4 
5 

\ 
\ 

1,07590^ 
-0.1T991R-> 

-0.1207977 
0.61850^7 

6 
7 

1 
1 

-0.7931336 
-0.4874873 

0.5000023 
0.32e5?39 

1   -0.6937118 0.1035333 
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TABLE V-3-la:   COMPUTATIONAL RESULTS FOR N = 6. 
THFT/f Tmr 

T 
2 

4 

TT. 78540 00 
1 .0471 on 

~~r.30B9 99 
1.570800 

0.?O7 fQOO 

"0.78^000" 
0.7854000 

"0.7854000" 
0.7854000 

~ov7R~5"*rooir 

NR 

0.5236000 0.7854000 

DF   =      0   NR   = NT 1 Computation of Matric Elements 

I 
7 
3" 

"5" 

R   =      1    THFTA(TrR)   =     .0.7854000 
707TOT5 nTTTT7T08T  

0.7499967 
-0.1767801 
-0.4067512 
-0.3756481 
-0. l'»8*324 

1 .499990 
1.590981"' 

0.6249819 
"-0. 0943 88 8 

-2.296881 

PHI (T |R) 
OTO  

1.500005 
~~5/303-*08  

9. 374977 
"9.28067* ~ 
1.640434 

0.7854000 

IHfcl A(T,HV rzwrrm "PHI {1 ,HI 
0.8660263 

1.299035 
0.3247495 
-1.353173 
-1.928251 

0.0 
2.250004 
5.624091 

" 4.218695 
-'». 92106' 

1    P    « 7 
0.4999986 

--0.1250023 
-0.437500"* 

^0.2890596 
0.8984733F-01 
0.323242 8 =T7497261 8 -14.15039 

I   R   =      ?   THFTA(T.R)   = 1.308999 "HI(T.R) 
~"0.?5RR170 0.9650765 0.0 
-0.3996207 0.749Q944 '.799041 

"=0.3448823 =0.0636111 3.627195  
0.14^43^0 -1.581923 -3.71*404 

—0.342 7769 0.2 83 30TJ7 -10.12990  
0.430O666F-01 2.059617 -0.706279R 

-1   *   =     4   THETArr,*)   =        17T70800 PHI (T~,RT 
-0.3500762F-05 1.000000 0.0 

"=0.5000000 =O.T050229F=04:~    3.000000   
0.5251140F-05      -1.500000 -0.525 1140F-04 

U.7854000 

0.7854000 

"5 077854TJO0" 

0.3750000 
-0.6563923F-05 
"=073125000 —- — 
I   R   =      <?   THFTAt 

"~0". 923879^ ~ 
.0.780T288 
0.5856298  
0.3615978 

~"~07T3781"86~"  
-0.7636195F-01 

T" w~=      6" TFTET 
0.8660249 

—0.6249981  
0.3247566 

—07T34T41 
-0.2232749 
-TT.^740247 

0.26VbW0fc-04 -/.5 00000  
1.875000 0.1837899E-03 

=T).45 94748E=0T;  13.12500"   
T,R)   =     0.3927000 PHI(TfR) 
-07 38 26 84? 0.0 

1.060661 0.4393414 
1.8/5781  

•      0.7854000 

2.629439 
"37121167"' 
3.188541 

2.020491 
5.464164 

"TT70 85 6O" 
18.60277 

7R )   =     0 .52T5TJ0O PHriT,R»   • 0.7854000; 
0.6000010 0.0 
T77~99TTT9~ 
2.062498 
"2.435688" 
2.167948 
T7207654- 

0.750002° 
3.247604 

—T."06R758~ 
14.20821 

" I9".^974^T 

4 MATRIX        ; ~ 
(see equation 5.1. 12) 

~T     077 0 717) 5 3 07 4~99 9 9 79 
1.590974 

=0799437440" 
-2.625011 
=T.T65548" 

"17499992" 
0.6249781 

"=27296866" 

-IT. 87665280-05 
-6.197173 

^277840 8't 
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TABLE V-3-lb:   COMPUTATIONAL RESULTS FOR   N = 6. 

2 0.707105=1 0.3535517 1.060654 -I .040664 
0.765] 563 
-1.5 76405 

"-3.844884 
7.693146 

-1 .10485fi 
-0.4060130 
"0.54903 77 
-1.158044 

1.50 7739 
-0.74267750-05 

-3.535487 
9.802808 

3 0.7071055 
-0.705410'; 

0.18 30109 
-7.743 846 

. "7.216644 
-O.7475408D-05   • 

-1.P37H7 
2.378167 

4 
0.7073B9T 
0.7071055 

0.889642? 
-2.171316 

-1.0604SH 
1.335823 

0.7071 05'. 
K.465977 

0". 40844 ?0I5-04" 
-0.13460020-03   • 

0.653'800    ' 
1.767078 

-7.510626       "~ 
0.6173707 

"0.1 8545540-04  ' 
-0.37489710-04 

5.303791 
-9.780760 

5 1.959838 
4.858549 

*   5.8916?0  
1^83 7111 

"   1.499Q93" 
0.67497?? 

6 
5.7671 2"7      " 

0.707105? 
-7.710974 * 

1.060653 
2.91fcHOl 
3.06 59 76 

-T).4999998 
2.625021. 

0.7296737 
-7.39153? 

-0.7071078" 
-1.590980 

3.444^67 
1.707885 

0.87665600^05 
6.187195 

-2.6S1671 
-12.58701 

r -1.499998 
-0.6249803 

a 
7.265574    "" 

-0.3535579 
0.9943 876 

-0.7071080 
7.784094 
1.060668 

2.796875 
-1.060658 

•J. 84489 r' 
-?.6<J*i55 

-0.7651573 
1.574410 

'"•   3. V5601     ' 
-9.80784^ 

1.104 860 
0.4060135 

9 -0.1R30T15" 
7.743855 

-0.7071081 
0.7054130 

1.837174 
-2.328176 

-0.549034 7 
1. 158048 

10 
"-7.216670 

0.24754170-05 
-0.2073901 
-0.7071081 

=0.8896'.54 
7.171374 

' -1 .50/745 
0.74262570-05 

-0.40H44340-04 
0.1 3460060-03 

-0.6537824 " 
-1.767085 

1.060661 
-I .32582 8 

"-5.3033in 
9.280793 

-0.18565610-04 
0.3748983D-04 

IT -0.7071080 
-3.465989 

-1.499908     
-0.6249745 

-1 .959846 
-4.858566 

12 

7.510634 
-0.6123729 

-5.76T148 " 
-0.7071078 

"7.711001 
-1.060657 

.-5.891642 
-1.837117 

-0.729624b ' 
7.391559 

-7.916812 
-3.065937 

' 2.651681 
12.58705 

-3.4445 79 
-1.707891 

Al  h IATRIX          =   B(0) 

0.7071053 

_c,(e) 

1 

l 
0.0 1.49999? 0.0 

'     1.590974 
-0.9943840 

_,o.o 
0.0 

"'0.6749781 
-2.796866 

0.0 
0.0 

Z 0.0 
0.0 

0.3535517 
-3.844884 

0.0 
0.0 

.   -1.060664 
-3.535487 

3 
0.0   " 
0.7071055 

"7.693146 
0.0 

0.0 
0.54Q0327 

9.802808 
0.0 

-0.7054105   " 
0.7073893 

0.0 
0.0 

-1.158044 
1.507739 

0.0 
0.0 

4 0.0 
0.0 
0.0 

vO.7071054 

-0.74f54080-05      0.0 
0.4084420D-04      0.0 

-2.121316~ 
5.303791 

5 
TO.13460020-03 

0.0 
0.0 

1.959838 
-9.780760 
0.0 

3.465977 
5.767127 

0.0 
0.0 

4.858549 
5.891620 

0.0 
0.0 

6 0»0 
0.0 

0.6123707 
0.7296737 

0.0 
0.0 

1 .O60653"- 

-2.651671 

7 
0.0 

-0.4999998 
-7.391532 
0.0 

070 
0.87665600-05 

-12.58701 
0.0 

2.625021 
7.265574 

0.0 
0.0 

6.187105 
2.784094 

0.0 
0,0 

8 0.0 
0.0 

-0.7071080 
-0.2651573 

0.0 
0.0 

-1.060658 
1.104860 

0.0 1.574410 0.0 0.4060135 
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TABLE V-3-lc:   COMPUTATIONAL RESULTS FOR N = 6. 

9 -n. I830115 0.0 1.837124 0.0 
7.743855 • 

-7.716670 
0.0 
n.n 

•0.7071081 
1.060661 

--! .3?5B28~ 
0.0 

-2.378176 
-0.8896454 

0.0 
0.0 

TO     0.0 
0.0 

0.0 
0.0 
0.0 
-1.4ggg98 

0.7 4 26? 5 71)- OS 
-0.185i561D-04 

"0.0 
11   -0.6537&24 

0.37489830-04 
0.0 

-1 .7A70F5                  0.0 
7.510634                  0.0 

T7     0.0                              -0.7071078  ' 
0.0                                 -?.916812 

"0.0                                 -3.065937 " 

-0.6745745 
7.711001 

"0.0"                ".'"" 
0.0 
0.0 

0. 0 
0.0 
-1.837117 
-}.444579 
-1.707891 

M   HA1HIX        .   B(0  )c(e) 

c      2   c 
—l ~o.o                    ~ o.49ggg7g 

0.0                                 -7.675011 
 0.0                  -7.765548 

?      C. 7071.0*5                  0.0 

" 0.0 
o.o 
0.0 

1.060654 

-0.87665780-05 
-6.187173 

"-7.784084 
0.0 

0.765166T 
-1.5744C^ 

—3~   0.0 
0.0 

0.0 
0.0 
0. 18^0109 
-7.743846 

-1.104P56 
-0.4060120 

~ 0. 0 
0.0 
0.0 

-0.74767750-05 

0. 0 
0.0 

" -1.837117 
2.^28167 

"  0.0 
4      0.7071055 

7.216644 
0.0 

0.8896477 
0.0 

-1.06065H 
1.325873 

—5—O.n 
O.n 

0.0 
0.0 
0.6532800   

1.767078 
-7.510626 
0.0 

0.18565540-04 
-0.37489710-04 
" 0.0 

0.0 
- ~0. o 

1.837111 

0.0 
0.0 

1 .409993 
0.6749777 

~      0.0 
6      0.7071057 

-7.7l0g74 
0. 0 

7.gibuoi 
3.065926 

0.0 
0.0 

3. 444*36 I 
1 .707885 

u.o 
0.0 

7     0.0 
0.0 

-0. 7071078 " 
-i.^gogso 

"0.0" 
0.0 

-1 .499098 
-0.6 249 80 3 

o.o 
8   -0.3635529 

0.°943876 
0.0 

0.0 
1 .060668 

2 .296875 
0.0 

3.844H9f 
-7.693155 

<r~o.o" 
CO 

0.0 
0.0 

"-0.707T081 ~ 
0.7054130 

4.6 IVJUJ 

-9.B07R43 
"0.0 
0.0 

o.n 
0.0 

"-0. 5490347 " 
1 .158048 

o.o 
10      0.74754170-05 

-0.2073901 
0.0 

0.0 
7.171374 

-1.507745 
0.0 

-0.40R44340-04 
0.13460060-03 

0.0 
0.0 

-5. 30 3 410 
9.7807g3 

O.U 
0.0 

11      0.0 
0.0 

-0.707T0BTJ 
-3.465989 

~~0.0 
0.0 

" -1 .959846" 
-4.858566 

0.0 
1?   -0.6123729 

-5.767148 
0.0 

0.0 
-1.060657 

-5.891647 
0.0 

-0.729674b 
7.391559 

U.O 
0.0 

2.6516H1 
12.58705 

0.0 
0.0 

OPTA   =      -7.864 776  : =   Det(BJ- Det(c] rf 

H    1NVERSF 

1      -7076.057 824.8329 -235.4175 36.47884 
-4829.994 
-229.4479 

7       706T.QT8" 

"5 742.467" 
34.48322 

-811.2735" 

-2061.957" 
-4827.696 
"279.4407 

813.2379 
5227.653 

-34.48125 
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TABLE V-3-ld:   COMPUTATIONAL RESULTS FOR   N = 6. 

4R2">.681 -S527.630 2076.0*5 -824.R3R8 

3 
735.4273 
77*.0667 

'-36.48045 " 
-*06.8711 

'  4879.960"'" 
87.52?79 

-5242.43d 
-13.4041 8 

I79H.771 '' 
80.44323 

-766.1076 
-1.789.769 

-'952.241 
-11.23036 

756.1236 
17R0.7Q5 

-793.4619" 
-19*4.655 

4 '293.4531 
i"34.624 

-80.4395'' 
-773.0571 

11.77.946 
306.8698 

5 -287.743? 
""13.40464 " 

114.1203 
-1798.739 
-37.43706 

19«;7.203 
4.892121 

-669.8868 
-26.7Q751 

727.0248  ' 
3.*37347 

-7 74.0968 
-662.7319 

103.4787 
712.7876 

6 
—"774.0853 

662.7093, 
" -103.42 37" 

^712.7670 
26.79549 
287.7342 

-3.336910 
-114.1178 

7 
37.436/H 
89.146IV5 

-4iH92206 
-35.776*9 

669.8616 
9.953992 

-726.9986 "" 
-1.476195 

207. 7711. 
6.845014 

-275.4182 
-0.7152721 

"    HI.1860 3 
203.4543 

-79.08981  " 
-216.9684 

R -81.179b! 
-20*. 440* 

"79.08693 
716.9531 

-6.844049 
-89.14116 

"0.7150863 
35.27445 

9 
-9.95 <S88 
-10.RR575 

'. .4 761 rs " 
7.872536 

-207.J56S 
-2.183500 

""   2 2 5.4U7 7 
0.3186573 

-46.46694 
-1.09'0*1 

50.39694 
O.R1014qOO-01 

-16.69391     
-44.75387 

"5.446819 
47.01133 

10 16.69138 
44.74R29 

-"5.445745 
-47.00570 

1.090693 
19.88293 

-0.8095460D-01 
-7.821697 

11 
2. I 84795 
2.400715 

-0.*186!61 
-0.9341004 

46.46171 
0.7574637 

'      -50.39080 
-0.3707457D-01 

—rr 

5.675387 
0.66207280-01 
-1.695*90 
-5.241025 

-6.136266 
0.83647740-04 
0.465.75 77 

5.310824 

"  1.695998  " 
5.742401 

-0.66177270^0" 
-2.400137 

-0.4660073 
-5.312328 

r~="0. 960958RO=D4"~ 
0.9338818 

-0.2 574065 0.37067280-01 -5.6 7 4994 6.134767 

OETAl   =      -3.9f594H =   Det {B| Det JC A 

AT   INVFRSE 

1 -5S4.6156 
262.1271 

0.0 
0.0 

-107.H239 
-204.3067 

0.0 
0.0 

-7 
-17.79314 
0.0 

0.0      •     ' 
1.4.992 75 

-272.3880 
0.0 

0. 0 
3-. 550754 

"~ovo 
o.o 

11 .44198 
16.22107 

0.0 * 
0.0 

"14.00711 
-14.23709 

3 604.62 94 
-284.6938 

0.0 
0.0 

lib.9178 
721.2133 

0.0 
0.0 

4 
18.62790 

0.0 
0.0 
-17.46460 

297.2351 
0.0 

0.0 
-4.013707 

0.0" 
0.0 

-13.44339 
-19.40593 

0.0 
0.0 

-17.46238 
16.49383 

5 -435.3287 
203.6143 

0.0 
Q.o 

-80.60011 
-157.3388 

0.0 
0.0 

6 
-12.51176 
0.0 

0.0 
13.98429 

-214.1189 
0.0 

0.0 
3.021337 

0.0 
0.0 

'0.96294 
15.64476 

'   0.0 
0.0 

14T37258 
-13.53111 

7 215.4509 
-99.4615R 

.0.0 
0.0 

37.30367 
76.28499 

0.0 
0.0 

R 
5.571632 

0,0 
o.O 
-8.123169 

105.9758 
0.0 

0.0 
-1.569300 

~0.0"~ -6.514678 0.0 -8.802463 
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TABLE V-3-le;   COMPUTATIONAL RESULTS FOR   N = 6. 

o.n -8.723768 0.0 7.822831 
9     -68.4H19H 

?n.95625 
0.0 
0.0 

-10.611 n 
-73.16369. 

0.0 
0.0 

-1.52412 f 
10     0.0 

0.0' 
1.191295 

-33.68645 
0.0 
0.0 
0.0 

0.0 
0.5213298 

o.n 
0.0 

7.667959 
3.110316 

4.027597 
-3.231770 

11          JU.6/90S 
-4.652137 

o. 0   ' 
0.0 

""   1.4270HH 
3.456405 

u.u 
0.0 

0.1 967558 
12      0.0 

0.0 
-0.6498930 
-0.6*98923 
-0.5493498 

5.361962 
0.0 

0.0 
-0.87069110-01 

o.o    •••'••" 
0.0 

0.0 
0.0 

-1.03R577 
0.7001620 

DFTA2   =      -3.975176 .=  Det [B] Det[c2] 

A2   INVERSE 

1      0.0 -1.4.00701 0.0 -16.22097 
0." 
0.0 

14.73 ruo 
-3.550709 

0.0 
0.0 

-14.99755 
-11.44183 

2        204.3484 
2 72.4440 

"   0.0 
0.0 

17.T9669 
553.7254 

0.0 
0.0 

lOf.8451 
3     0.0 

0.0 
17.46228 

-267.1788 
0.0 

0.0 
19.40581 

o.n 
o.n 

-16.493/'/ 
4.013655 

o.'j 
0.0 

1f.46436 
13.44371 

4     -221.2587 
-297.2960 

"0.0 
0.0 

"   -18.631.76" 
-604.7488 

0.0 
0.0 

'         -115.9408 
5     0.0 

0.0    . 
-1 4.37250 

73477501 
0.0 

'0.0 
-15.64467 

0.0 
0.0 

13.53103 
-3.0212 96 

0. 0 
0.0 

-13.9R411 
-10.96280 

6        157.37U 
214.1626 

0.0 
0.0 

12.5145? 
4^5.4145 

0.0 
0.0 

80.61663" 
7     0.0 

'"    0.0 
8.802417 

-203.6547~ 
0.0 

"     0.0 
8.723711 

" o.n 
0.0 1 .569277 

U.U 
0.0 

8.123067 
6.514594 

"    8     -76.30100 
 -105.9<?74 

0.0 
0.0 

-5.572988 
-215.4931 

" 0.0 
0.0 

-37.3UB0' 
9      0.0 

n.o 
-4.027582 

99.48148 
0.0 

0.0 
-3.110293 

0.0 
CO 

"A.23] Ol 
-0.5233213 

0.0 
0.0 

-3.191253 
-2.667926 

10        23.36874 
33.69325 

0.0   " 
0.0 

1.574554 
68.39530 

0.0 
0.0 

T0~.M43D 
11 >   0.0 

0.0 
1.038575 

"-30.96253 
0.0 

0.0 
0.5493452 

O.O 
0.0 

-0.7001590 
0.87067720-01 

"    0.0 
0.0 

0.6498B49 
0.6498855 

12     -3.457200      " 
-5.3630*4 

0.0 
0.0 

"-0.1968276 
-10.68115 

0.0 
0.0 

-1.422493 0.0 4.653328 0.0 

DET   a         1.97R0"7 -  D«(I+C1   G2j 

A  1RVWSF 

1      -2076.057 B24.B329 -235.4175 36.47884 
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TABLE V-3-If:   COMPUTATIONAL RESULTS FOR   N = 6. 

-4R7q.0cv.» 
 -770.4470 
2        2061.93R 
 "4877.681" 

2 7 5.4??7 
"3 773.0667" 

179R.773 
 RO.44323" 
A      -756.1076 
~~^T7R9.760" 

-R7.57367 

"5—-7B7.743Z 
-6*9.R86R 

5747.467 
~~T«7W327~ 
-813.7738 

~-c?'277.630 
-76.48045 

"^*706. 8711 
-1952.241 
^rrrr*TR6- 

797.45-^ 
"1 934.6 24 

17.40464 
1 1.4.1203 
777.0748 

-7061 .9S7 
"^A8?T.7>'76~ 

7?9.4407 
"" 7076.055" 

4R?q. 960 
~  87.57779" 

756.1236 
 17R9. 79T" 
-R0.47057 

--7"»3.0571" 
-1798.739 

"-37.47706" 
-274.0968 

-76. '9 HP 
?74.0R57 

"662.7093 
77.43678 

~  B9.146P5 
707.7711 
 6.R4bniTT 

R     -Rl.17951 
—~-703.440^" 

-9.967SPR 
TJ -19.RR575 

-46.4669'* 
 ^TTOPTOT'- 

 T7T37T17- 

-103.473? 
""-712.7620 

-4.R92206 
""-75.27639 

-775.418? 
-0. 7157777" 

79. 08693 
~~2!6.9531 

1.476175 
~~   7.87753V 

"iO.39694 

•="67J."7T7TI 9 
26.70549 
2 87.734 2" 
669.8616 

" 9.95799? 
81 .18603 

" 203.4543 
-6.8440^0 
'-S'*. 14116" 
-207.7565 

'-2. 183500 
-16.69791 

10 16.'.91 3R 
44.74829 
2.1B3796 
2.40071T 
5.675787 

" O.BI014 90D-01 
-5.445745 

""-47.00 5 70  " 
-0. 31R6761 

"=r0."«5341004   ~" 
-iS.l 36766 

-44. rs 48 j 
1.090593 
19.8R793" 
46.46l?l 
0.7574637" 
1.695998 

Rl3.7379 
-"5277Y65y 
-34.4R1 25 
-87^.8388" 
-5242.47R 

""-13.40418 
-793.4619 

•="T97WW>5  
1 1.22946 
3 06.R698 " 
1957.2 08 

- 4.R72171 
103.4787 
 THrrTBTS— 
-3.336910 

"-H4.il70 ~ 
-726.9986 

"-1.4761*5,' 
-79.08981 
-2l6.9"6"ff4~ 
0.715086 7 

"  35.27445 
225.4027 

0.3186573 
5.446813 

 4T701T73— 
•01 -0.80954600- 

"-7.821692 
-50.39080 

^0. 37O7457H-01 
-0.4660073 

0.66207?oi)-01 
12      -1.695390 
 -572^1075" 

-0.2574066 

0.83647640-04 
0.4657577 

~ 573X0824 — 
0.37067280-01 

5.242401 -5.312328 
-0.66137270-01   -0.96095800-04 
-2 ."4717)137 
-5.673994 

~0.<n38B18- 
6.134767 

FP Fl 

1 
?r 
7 

—4- 

5 
 TT 

7 
—8" 

9 
~rcr 

11 
"T7" 

1      0.4777118 
1      0.782 37 6 3        ~ 

1 • 1 .076478 
T"""  1 .277 0 79  

I 0.1347068 
1      0.2770187      ; 

1 -0.7977000 
1~=0.4»75162  

1 -0.69A1013 
"T~=0 ."R 680 3 7 9 

I   -0.84773R7F-01 

-0.760'461 
-0.7 04 094 9 
-0.1707968 
"-0.157R1.57 
-0.604R777 
-0-.53166M1 
0.5000076 

—or*?**??.! 
0.1036799 

^•0.1695 077 
,    0.6589078 

0.6185065 1    -0.139749.T 

XR XT" 

1 
2 
3 
4 
"T 
6 

"7" 

7r.7179465- 
1 0.6706334 
1 -0.2100334 
1   -0.7776118 

"^0.9100457 
0.41/-7143 

'   0.56RO502H-01 
-0.2307776 

oln 

T     0". 23P5065F-0T^0^B9O2D6"E^51 
1     0.4171939E-01      0.3016903F-02' 

"r^07T42870TF^U2     0Tff<5in79~0E-05 } 
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TABLE V-3-lg:   COMPUTATIONAL RESULTS FOR   N - 6. 

8 
—vr 
10 
Tr 
12 

1   -0.1Q62515E-02   -0.1287782F-04 
T O.biHHl U6fc-(J4   -U. IU1410UI—Ob 
I      0.63R6307F-04      0.9779858F-06 
1   -0. 154T88RF^05 0TT2 7*1*71 
1   -0.14H965F.-05   -0.1046H0F-06 

FRC FTC 

elq 

1 
'?' 
3 
A" 
5 

1 0.4777U7 
~]~~T}.7B73?6?~ 
1 1.076477 
T~~ IV2730TIT 

1 0.13*7067 
T 0T77TOTP7T 

1 -0.?<5?69c>9 
-1~-T). 48751 67 
1 -0.6941013 

T~=DV8"fiU0-?7'»T 

•0.36()TAftO 
•0. 7040949" 
•0.1 707967 
-0.153 8157" 
•0.6049777 
-0.5 3166 80 
0.5000025 

~0^37R5273~ 
0.1Q35299 

^OH 69 5 977" 
0.6589078 
U.61HbU64 

_EL 

7 
T 

9 
TQ- 
ll 1   -0.P477376F-01 
T2 1 -u.ii'mm  

M 
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TABLE V-3-2:   COMPUTATIONAL RESULTS FOR   N = 6. 
THFTA PHI 

1 .57079'. 
1 .AT9896 

0.7863979 
0.78*3979 

1 . 3089r,c; 
1.17p09^ 

0.78^979 
0.7853979 

5 
6 

J ,0<»71 9r> 
0'. "162976 

0.7H«>3979 
0.7853979 

OPTA   =   -0.24B'404F-0? Det B Det C 

0FTA1 -0.5461611F-0' 
=   Det B Det C 

PETA2 «   -0." 46.1 B16F-0' = . Det B         Det C 
9. 

OFT   • 0.4543355 =   Det[l+ C_1 C   | 

P T -    FK FT 

1 1 
(Real Part) 
1.773079 

(Imaginary Part) 

2 
3 

1 
i 

1.1Q?777 
1.076477 

-0.1210305    ) 
-0.1207<>75    (    F 

5 
1 
1 

0.9?*8061 
0.787377" 

-0.150O95Q    (      9 
-0.7CO975    |         M 

8 
_9_ 
10 
11 

6 i      0. '6?6fc? 48 
7 1   -0.8680780 

•0.2765667 
•0.16Q5P10 

j. -O.78R?RKO 

1    -0.6940070 
•0.7765675P-01 
0.103533? 

1   -0.5°1837O 
1    -0.4H7517? 

0.7725537 
0.32R5241 

12 1   -0.3863768 0.4210207 

(Real Part) 
0.7327083 
0.670P6PO 

XI 
(Imaginary Part) 
^0 79100252 
0.4146953 
0.56791>3ie-01 
-0.2303743  
-0.c''fi5;»243F-03 
0.301 6957^-02 
0.719S473E-05 

3 1   -0.20OP'*?'. 
4 !    -0.37",69?R 
5 
6 
7 
8 

-V— n.?38l6 7'4F-01 
I   . 0.41 747Pr^F-01 
1   -0.1M7519F-02 
1    -0.1«69686F-02 -0.14''?371^-0<> 

-0.579*??7F-06 
0. 150^81 8^-05 

oln 

10 
1 1 
12 

1 
O.513*791F-04 
0.66'0o74E-04 

-0.581?608P-07 
-0.3721185F-06 

eln 
1   -9.U17?00E-05 
1   -0. l*n2133E-05 

FRC 
(Real Part) 
1 .2730 7S 

FIC 
(Imaginary Fart) 

1 
2 

6 
7 
8 

_9_ 
10" 

1 .192776 
1 .07 64 76 

-0.121-1306 
-0.1207975 

0.9*58050 
0.787327':> 

-0.1500Q59 
-0.704-|Q75 

1       0.6766248 
1    -0.86802 79 

-0.'765667 
-0.160*910 

oln 

1 -0.7887B4R 
I -0.6940969 

-0.2765676c-0l 
0.1035333 

1    -0.591.8369 0.2225537 

eln 
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TABLE V-3-3:   COMPUTATIONAL RESULTS FOR   N = 6. 

-THTTA PHI 

0.761 7993 
3 0.3926989 

0.SP359P6 

0.78,;",979 
0.78r-3q79 
0.78^979 
0.785-<979 

T      0.65'>4987 
ft      0.78c3970. 

0.7853979 
0.7B*3979 

OFTA    =   -0. 1 06O765F-1 6 

DET/V1    =   -0.724O567F-15 

OFTA?   =   -0.6205844F-15 

1ZT   =      0.6.778'O'<F-01 

PR ri 

1          1 0.75647951=. •01 -0.^7*904 
2         ] 
3 

n. 66633 6'+F- 
0. 1 3'»?0*?. 

-01 -0.66"!6657 
-0.60'.P7as 

1* 
5              1 

n.??7nipi 
0.34?7?O5 

-0.531*70:' 
-0.447P709 

6 
7 

I      0.A 777 ins 
> -o.200046eiE:- -01 

-0.3603^83 
0.70^"730 

8   . 
9 

|    -0.A41Q7J1P 
1   -0.8427298F. 

-01 
-01 

0.6"73667 
0.658r<066 

10 
11 

1   -1.139748? 
1   -0.2097233 

0.61H10S8 
0.565^968 

1? 1   -o.?9r6oe'' n.^oo'io?! 

P T XR XF 

1 
2 

1 
1 

0.753f4^M 
0.6S78B7^ 

-0.700^206 
0.70?6AO3 

3 1 
1 

-0.?1778H* 
-0.368^531 

-0.108«313n- 
-0.1630770 

ni 

5 
6  . 

1. 
1 

0.26601POF-01 
b.4l05565E-01 

0.19PP5R7F- 
-0.18',^36TC- 

•0! 
•01 

7   - 
8 

1 
t 

-0.717998?F-0? 
-0.2060676F-02 

-0.512^?R0F.- 
0. 51**4 2 IE- 

-02 
•n? 

10 
1 
1 

0.198Q400F-03 
0.120^9?5F-03 

0.81D 780BC- 
-0.8A77.M5F- 

-03 
-03 

11 
1? 

1 
1 

-0.1488529F-0'f 
-0.994O4f13E-05 

-0.65Qr,229F- 
0.68161 R7F- 

-04 
-04 

R T FRC Fir. 

1 1 0.?'.8O?65E-01 -0.698713? 
2 
•a 

1 
1 

0.658c258O01 
0. 1336178 

-0.6619473 
-0.A0A6371 

4 
5 

1 
1 

0.2266036 
0.3^?^Q11 

-0.5307584 
-0.4462211 

6 
7 

1 
1 

0.4 775 945 
-0.19119O7F-01 

-0.^571487 
0.70'>ni43 

8 
Q 

1 
i 

..-*<).43*0888F-01 
-0.8338946E-01 

0.6P77364 
0.65P90^8 

1 0 I -0.1388899 0.6181347 
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TABLE   V-3-4:   COMPUTATIONAL RESULTS FOR   N .= 6; 

T P THETA PHI 

1 
1 

i 

2 
1 .570794 
1 .3060 0=5 

0.7R^"'-979 
0.7853979 

1 
1 

3 
4 

t.832505 
1 .0471 ON 

0. 785^979 
0.78*'»979 

1 
I 

•5 
6 

?. 094394 
0.7853979 

0.7R91979 
0.785^979 

QFTA   = -1 766*9% 

0FTA1   = -0.1 l6^7qpqr-0'' 

DFTA2   s -0.' I648334F-0'' 

OFT =  0.\0721^3F 10 

TR 

1 1       ' .?7?0 7o -n. i *-*m >,o 
7 I. 1.0764.77 -0.1?07P75 
1 1 1.2P6346 _f).31p-<091 
A               1 0.78?3??P      •        -0.204OP75 
5 1        l . Q7pqPB -0. 594 5 fl^n 

"6               1 0.47771 OH      I        -0.3 60*483 
7               1 -0.R68P.7fiO               -O.lf.0'010 
p 
9 

1 
1 

-0.694097Q 
-0.9605555 

0 . 1 0 ' "5 ? 3 3 
-0.4770909 

10 
1 1 

1 

1 
-0.4n751'>1 

-0.93R523?    • 
0.3285741 

-0.7960107 
1? 1 -0. ?<?•>',OH? 0.5000023 

XR XI 

1 1      0.7327417 -0.909'J4I6 
_? i_     0.670R3 75 0 . 4 1 /. M Qg 

3 1   -0.209O560 0.567h6?7(=-01 
4 1    -0.3 726 858 -0.7 303*91 
5 1      0. 73821 P6F-01 ' -0.97/. '.P'lP-03 
6 I      0.41746<.6F-0l      0. 300 7 R73F-07 
7 

8 

1 

1 

-0.14194 1RP- 
-0. 197Q37".n. 

•0? 
-0? 

0.45014 3 2P- 
-0.fl5"077or- 

•05 
-05 

10 
1 
I 

0.5178574E- 
0.655R617F- 

•04 
-04 

0.4 58')ei6CrT- 
0.ll6O489fi- 

-08 
-07 

1 I 
12 

1 
1 

-0.1207677F- 
-0.156801 2e< 

-05 
-05 

0.666R106F- 
0.lO?76r»RP. 

-08 
-07 

R T FRC r-\C 

1 1 1.2720 78 -0.153H140 
7 
•x 

1 .). .0 764 76 
•  '^.li 2863*5 

-0.1207976 

-0.31R39P2 
i, 
5 

1 
1 

0.7R????o 

1.070887 
-0.2040O76 
-0.5 9^r>R6R 

6 
7 

1 
l 

0.47771 OS 
-O.P6R02 79 

-0.36034R3 
-0.169SP09 

8 
0     • 

1 
1 

-0.6940970 
-0. 9605*5 54 

0.1035333 
-0.4770908 

10 1   -0.4875121 0.3285240 
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TABLE V-3-5:   COMPUTATIONAL RESULTS FOR   N = 6. 

THFTA nTu 

1 3 I .1 780^7 0.78^7970 
I ? 1.0471°^ o.7«S^q79 
1 
1 

3       0.0162976 
A       0.785397P 

0.78r>7979 
0.78*3979 

1 
1 

5 0.6^4*487 
6 o.5?359B6 

0.78«v3«37q 
0.7857Q79 

OTTA    a -O. 1030H30F-06 

OF TAT =   -0.9475437F-06 

0FTA2 a   -O.PA6535*r-06 

OFT   = 0.108789*. 

P T                    FR FJ 

1 3     0.0358051 -0.1^OOO^q 

2 
3 

i   .   0. 7823?7p 
i      0.62 6 67/, R 

-n.?04oq7S 

-0.2765667 
4 
5 

I      O.477710=i 
l      0.1*27305 

-0.3603A83 
-0.447370° 

6 1      0.22701.PT -.0.531 6702 
7 ]   -1.591 83 70 0.222'*^37_ 
8 1    -0.48751?? 6".3?P5?4l 
9 1    -0.3P6376R 0.421M207 

30 

13 

1   -0.?°'698? 
3    -0.2O9773R 

O.50OO073 
0.S65SQ^R 

1? 3   -0.1397482 0.63 8^0* R 

X°> XI 

1 
2 

1 
i 

0.773 580^ 
0.6720417 

-0.9l??691 
o.M 7"in80 

3 
4 

1 
1 

-0.2095775 
-0.3731167 

0.575<w,62?:-:)l 
- 0. 2 3 3 1 9 ? A 

S 

6 

i 
1 

'1.23703 70F- 
0.A1 flOGO'sc. 

•01 
-01 

-0. ]. 21O5?6»:-0? 
0.3300967P-02 

7 1   -o. 3 392134F-02     C.^7mis^F-04 
8 3    -0.2017A26E-02   -0.0756308F-04 
9 

10 
3 
1 

0. A783A8RF- 
0. 741 6171F- 

•OA 
•OA 

^O.t5?6rlRl 7F-05 
O.T71c'(t85F-OA 

31 
12 

1 
3 

-0.107O560E- 
-0.2S33AC1F- 

-05 
•05 

0.610O776F-06 
-0.18863 11^-05 

R T FRO FIC 

1 3 0.9358056 -0.15000*7 
2 
3 

1 
3 

0. 78->3?36 
0.6266256 

-0.20'>09R3 
-0.2765676 

A 1 

3 

0. A 777 1 ]4 
0.3A77^0A 

-0.'60*49? 
-0.4 4 7^73 7 

6 
7 

3 
1 

0.22701°0 
-0.5918363 

-0.571^7Q9 
0.2 775530 

8 
9 

3 
3 

-0.48751 16 
-0.3863765 

0.328 5 273 

O.A23J200 
10' I   -0.2926981 0.5000018 
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